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Abstract. This paper describes the approach employed to implement
the autonomous landing of an Unmanned Aerial Vehicle (UAV) upon
a moving ground vehicle. We consider an application scenario in which
a target, made of a visual pattern, is mounted on the top of a ground
vehicle which roams in an arena using a certain path and velocity; the
UAV is asked to find the ground vehicle, by detecting the visual pattern,
and then to track it in order to perform the approach and finalize the
landing. To this aim, Computer Vision is adopted to perform both detec-
tion and tracking of the visual target; the algorithm used is based on the
TLD (Tracking-Learning-Detection) approach, suitably integrated with
an Hough Transform able to improve the precision of the identification
of the 3D coordinates of the pattern. The output of the Computer Vision
algorithm is then exploited by a Kalman filter which performs the estima-
tion of the trajectory of the ground vehicle in order to let the UAV track,
follow and approach it. The paper describes the software and hardware
architecture of the overall application running on the UAV. The appli-
cation described has been practically used with success in the context of
the “Mohamed Bin Zayed” International Robotic Challenge (MBZIRC)
which took place in March 2017 in Abu Dhabi.

1 Introduction

Autonomous landing on a moving vehicle is an important problem that has been
investigated by different research groups worldwide [2,3,4]. Cooperation between
UAVs and Unmanned Ground Vehicles (UGVs) to help humanitarian demining
operations [5,6,7] and for aerial monitoring [8,9] are some of the main applica-
tions in this context. In this paper we describe the system we have designed and
employed in the MBZIRC Challenge. The Mohamed Bin Zayed International
Robotics Challenge 2017 (MBZIRC) is a robotic competition held in Abu Dhabi
in March 2017. The team of the University of Catania has been selected to par-
ticipate to the Challenge 1 and this paper reports an overview and some details



Fig. 1. Playing Area (left) and Visual Target (right)

on the developed system. The Challenge 1 consists in the autonomous landing
of an UAV on a moving platform [1]. According to MBZIRC rules, Challenge 1
requires a UAV to locate, track and land on a moving ground vehicle. The com-
petition was performed in an open arena where a ground vehicle moves following
an eight shaped trajectory, as shown in Figure 1. On top of the vehicle, the land-
ing area is a square of dimensions 1.5m x 1.5m indicated by a given target (see
the Visual Target depicted in Figure 1). The UAV takes off from a given position
and autonomously lands on the target placed above the moving vehicle, in the
shortest time possible.

In the following sections an overview of the developed system and its com-
ponents will be presented. Focus will be given to the main modules related to
the dynamical estimator and the vision system. In particular, a tracking mod-
ule able to detect and track a known pattern is employed to select a region of
interest within the whole image. Then, a circle Hough transform is used to de-
tect the center of the target with high precision. This system resulted the best
solution defined taking into account several constrains related to the considered
task. Indeed, the addressed Challenge requires the definition of an hardware and
software system able to detect the target and its coordinates with very high
precision, and combine this information with other data coming from different
sensors (e.g., UAV position, speed, altitude) in order to define the best trajec-
tory for the UAV. Due to the nature of the Challenge, this software pipeline is
performed in real-time, taking into account further limits caused by the need
of a lightweight hardware. Therefore, we discarded approaches to visual object
tracking existing in the literature that have been formulated making specific
assumptions on the application domain. For the considered task, a method to
update the target representation during the tracking is required, due to the pose
and scale changes the target is subject to. Several solutions based on the state of
the art in object tracking have been considered [12,13,14,15]; the final choice is
an hardware and software vision system consisting of an Ocam camera (chosen
due its wide Field of View), which rectified images are processed with a pre-
trained TLD based detection and tracking of the target and the circle Hough
transform. Results of simulations and of the on-field trials will be presented and
commented.



2 System Architecture

Challenge 1 requires carefully taking into account of the control aspects, Com-
puter Vision algorithms and the development and integration of suitable hard-
ware needed to perform the autonomous task. The basic overall approach we
followed consists in reaching the center of the path by using a precise RTK-
DGPS at an altitude suitable for a global view of the environment, for a prelim-
inary detection and localization of the target by means of a wide range camera.
Then, a visual detection and tracking procedure is able to estimate the posi-
tion of the target and generate a suitable trajectory for the UAV. A dynamic
estimator merges the measurements of the vision algorithms with the inertial
and positioning measurements of the UAV and the estimated trajectories of the
UGV. Then, based on the UAV dynamic, the estimator generates the optimal
trajectory to reach the target in real time. When the UAV is in proximity of the
target, Computer Vision techniques are adopted for the accurate estimation of
the 3D coordinates of the target center to be used for safe landing. Once landed,
all motors are switched off. The emphasis has been put on the use of lightweight
hardware platforms. To this aim, the Computer Vision and control algorithms
are optimized to run effectively on a lightweight high performance embedded
system.

2.1 Hardware Architecture

The multirotor frame chosen for the competition is the “Spreading Wings S900”
by DJI, characterized by high payload and stability. The PixHawk is used as
autopilot, it is a high-performance system able to deal with both the stabiliza-
tion and the navigation of the UAV. This simple but powerful system can be
connected to an on-board companion computer that, by running the high-level
navigation algorithms, can easily drive the UAV. The “eyes” of the multirotor
are represented by an Ocam camera, a fish-eye camera which allows the exploita-
tion of a wide Field of View. The image processing algorithm is executed by a
Jetson TX1, an embedded system developed by NVIDIA for visual computing
which provides a high performance GPU computing. The computed target po-
sition is used by the high level control algorithms to give the proper commands
to the Pixhawk autopilot by means of the Mavlink protocol. The accuracy in
the localization of the multirotor is ensured by an on-board RTK-DGPS system,
receiving the corrections from a base station. In Figure 2 the whole hardware
platforms selected are shown.

2.2 Software Architecture

The control software runs on the Jetson TX1. The software architecture is de-
signed as a multi-thread C/C++ application and it is executed on a Linux
environment. Furthermore, for simulation purposes, the software is able to run
inside a SITL (Software In The Loop) environment, using Gazebo as physics
engine.



Fig. 2. Hardware platforms used.

The multi-thread process is composed by four threads, as shown in Figure 3.

MAVLINK, PLANNER and COMPUTER VISION are the threads that pro-
vide support to the STRATEGY one:

– The MAVLINK thread is used as an interface between the process and the
autopilot. It allows translating messages from and to the autopilot through
the Mavlink protocol.

– The COMPUTER VISION thread acquires and analyses images from the
camera and provides the coordinates of the target to the PLANNER thread.

– The PLANNER thread is the interface between the main thread (STRAT-
EGY) and a Finite State Machine (FSM). It receives coordinates from COM-
PUTER VISION in order to update the FSM and gives the position of the
target over time as output to the main thread.

– The STRATEGY is the main thread and represents the decision-making
module of the overall system. It has a continuous acknowledge of the state
variables of both the system and the target. Its aim is to choose, in each
condition, the best strategy to optimally achieve the result.

3 Dynamic Target Position Estimation

The output of the PLANNER thread consists on the estimated target position
(in terms of latitude and longitude pairs) over time. This information is inferred



Fig. 3. Software architecture.

by combining the data coming from the Computer Vision algorithms and the
target trajectory estimation, which takes into account the known information
about the path and the vehicle speed.

Fig. 4. Working Schema of the Target Predictor

This thread is composed of the following basic software modules:

– Target Detector is the module handling the visual identification and tracking
of the target;

– Trajectory Predictor is the estimator of the trajectory of the target that takes
into account the (known) path and speed, and suitably adjust the position
of the ground vehicle on the basis of the information given by the Target
Detector.



Fig. 5. Exploited acquisition hardware consisting on an Ocam camera.

The first module is described in depth in the following sections since it is
the main objective of this paper, while the latter is briefly described here. The
Target Predictor is a Kalman estimator that tries to determine the position of the
target at each time instant. It basically implements the equation of the motion
of the ground vehicle using a virtual point that drives on the path at the speed of
15 km/h. The output of the predictor is the expected Earth coordinates (latitude
and longitude) of the target, information that is then used by the High-level
Control to proper drive the UAV. These coordinates are continuously adjusted
using data coming from the Target Detector: this module returns the center of
the target, in local coordinates; a local-to-global transformation is then applied
and the error between the detected and estimated coordinates is used to update
the estimate. The Target Detector and the Target Predictor thus work in a tight
cooperation according to the schema reported in Figure 4.

4 Target Detection and Tracking

The Target Detector module is aimed to detect and track the target from a live
video stream. For each frame, this module provides to the system the coordi-
nates of the target, according to the coordinate system of the camera (i.e., the
target coordinates from the UAV point of view). These local coordinates are then
transformed in global coordinates, referred to the global coordinate system.

4.1 Acquisition Hardware

The images processed by the Target Detector module are acquired by an Ocam
camera (see Figure 5). We selected this device due its large Field of View given
by the fish-eye lens. The fish-eye lens produces a strong visual distortion in
the acquired frames. Therefore, the first step of the vision module is a camera
calibration aimed to perform a proper image rectification. Figure 6 an image
frame acquired by the Ocam camera, in Figure 7 the results of image rectification
is shown.

4.2 Video Analysis

The employed video analysis algorithm implements a combination of two dif-
ferent well known Computer Vision techniques for the detection and tracking



Fig. 6. Camera calibra-
tion: the chessboard pat-
tern, with known squares
dimensions, is exploited
to perform the camera
calibration (i.e., find the
camera calibration pa-
rameters.

Fig. 7. Camera calibration: this
Figure shows the result obtained
after the image rectification.

of a known pattern. The aim of an object tracking algorithm is to estimate
the trajectory of an object as it moves over time by identifying the object
positions in different frames of an input video. Tracking objects can be com-
plex depending on the application domain that can involve specific constrains.
One of the main issue related to object tracking is to address with the appear-
ance change of the target object. Generative tracking algorithms represents the
target object in a specific feature space, and then perform a research of the
best match within the image [18,21,17]. Discriminative tracking algorithms de-
fine a binary classification problem aimed to distinguish the target from the
background [19,16,11,20]. In particular, the vision system exploits the Tracking
Learning Detection (TLD) [11] algorithm to detect and continuously track the
position of the target over time, considering both the vehicle and UAV move-
ments. This algorithm implements a real-time detection and tracking of a given
image pattern specified at the starting frame. In our system, the object of in-
terest is provided by the initial detection of the target. It was possible because
the TLD algorithm has been previously trained to detect the considered target.
The TLD has been trained off-line, considering several target positions and dis-
tances. Furthermore, the TLD algorithm simultaneously tracks the object and
learns the object appearances. As a result, the detection and tracking perfor-
mance improve over time during the execution of the algorithm, allowing the
system to learn from a large amount of target examples taken with huge acquisi-
tion variability. The TLD algorithm performs a fusion step, which combines the
bounding box given by the tracker and the bounding box of the detector into a
single output bounding box. When at least one of the two algorithms provide a
bounding box, the fusion step outputs the maximally confident one, otherwise,
if neither the tracker nor the detector provides a candidate bounding box, the
object is declared as not visible by the system. The whole TLD pipeline is shown
in Figure 8.



Once the TLD algorithm provides a bounding box containing the target,
the system employs a circle Hough Transform [10] to detect a circular shaped
pattern in the provided bounding box. This technique allows to find an image
patch which contains an object with the shape of a circle taking into account
imperfect shapes, low quality images and changes in the target pose. The aim
of this step is to find the center of the target, corresponding to the center of the
detected circle. The previous target detection and tracking provided by TLD
gives robustness to the circle detection provided by the Hough transform. This,
combined with the wide Field of View of the camera, allows to find the target
and its position at almost any distance from the UAV with very high precision.

5 Basic Landing Strategy

The STRATEGY software module implements the high-level code to control
the overall behavior of the UAV. The first state, that is achieved when the
challenge is started, is TAKE-OFF and implies to drive the UAV to take-off
and reach a certain starting altitude; immediately after this phase, the UAV
is driven towards the center of the path 3 (i.e., the center of the eight shaped
path) at an altitude of 10 meters from the ground; then, the UAV waits for the
passage of the ground vehicle. When the target is detected, the Target Predictor
is initialized and the intercept position is computed (i.e., the position in which
the vehicle can be intercepted again). When this event occurs, the UAV starts
following the vehicle by tracking the target, also approaching the landing area by
means of a descending path. During the approaching phase, the UAV trajectory
is continuously modulated considering the output of the Target Predictor. When
the landing gear touch sensors detect the successful touch-down event, it causes
the turning-off of the propellers. For what concerns the Computer Vision module,
when the target enter the visible area of the camera, the Detection Module
performs the target detection exploiting the Hough Transform and provides the
first target example to the tracker module, as well as the position of the target.

Starting from this first information, the tracker updates the position of the
target over time. When the vehicle is in detected in the rectilinear part of the
path, the UAV starts the landing phase. When the UAV touches the landing
area, its motors are turned off.

6 Results

6.1 Simulations

Several simulations have been executed to test both the software architecture
and the sub-blocks. PLANNER block has been extensively simulated in MAT-
LAB/Simulink environment. The mission strategy has been improved by further
simulations in both Gazebo (Figure 9) and MATLAB (Figure 10) environments

3 The GPS coordinates of the area are known a priori.



Fig. 8. Scheme of the TLD algorithm.

by introducing the dynamical estimation of the target, to generate in real time
the optimal trajectory to reach the target. The whole Software architecture has
been initially simulated in Gazebo environment.

6.2 On field Trials

Several on field tests have been performed to acquire real images and data;
moreover target tracking and landing on the mobile platform have been executed.
Initially the videos have been acquired by using a Phantom 3 DJI UAV, and then
the camera was mounted on an ASCTEC Firefly. The software architecture
has been preliminary tested on a Raspberry PI board communicating to the
Pixhawk autopilot and installed on two smaller UAVs (DJI F450 and DJI F550).
Finally, the involved hardware and software solutions has been installed and
tested on the selected DJI S900 platform. Several different trials have been also
performed on the field arena concerning autonomous take-off, navigation and
landing. The experiments highlighted the importance of the vision system during
the target detection,tracking and the approaching of the landing area. The video
of autonomous UVA in action during the MBZIRC competition is available at
the following link: http://iplab.dmi.unict.it/MBZIRC/video.mp4.

7 Conclusions

The system described in this paper has been used during the above mentioned
International Challenge in March 2017. The developed system reached the goal

http://iplab.dmi.unict.it/MBZIRC/video.mp4


Fig. 9. GAZEBO simulations. Fig. 10. MATLAB/SIMULINK
simulations.

Fig. 11. S900 platform during the field trials.

to land on the moving vehicle in 120” and the achieved result has been placed at
the fourth position in the ranking of the International Challenge. The support
of the visual module to the whole UAV driving system resulted a crucial factor
for the achieved result during the attended competition. Indeed, all the teams
that didn’t exploit a vision system were unable to detect the target even when
it was very close to the UAV, and often to land at all.
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