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License Plate Recognition in the Wild: Challenges

• Uncontrolled
environment

• Unknown image
degradation

• Low image quality
• Compression

Source of the image?
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Prior Art and Research Question

• CNNs can in principle decipher unreadable license plates

CNN "9S12971"

• Previous art models only low resolution and added Gaussian noise

• Reseach question: Can we also reconstruct license plates under strong compression?

B. Lorch, S. Agarwal, and H. Farid, “Forensic reconstruction of severely degraded license plates,” in Electronic Imaging, Jan. 2019.
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Contributions

• Generating synthetic Czech license plates according to Czech regulations
• Top-1 detection accuracy under compression
• Influence of similarity and position of characters

Data generation CNN "9S12971"

Training

Testing

CNNtrained "4JN0141"

J or I?

J at position 2 or 3?

Influence of compression
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Data Generation Pipeline

• Allows to generate large number (≈ 10M) training examples
• Randomly drawn characters (following Czech regulations)
• Forms of degradation

• Low resolution
• Gaussian noise
• JPEG compression
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Example Images with an SNR of 3 dB
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CNN Architecture

• We study an existing feedforward convolutional neural network
• Convolutional and pooling layers extract features
• One output layer per position for character prediction

Input Convolution Pooling Fully connected
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B. Lorch, S. Agarwal, and H. Farid, “Forensic reconstruction of severely degraded license plates,” in Electronic Imaging, Jan. 2019.
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Results: JPEG Compression relative to License Plate Resolution

• Width≤ 70 pixels:
stronly impacted by
JPEG quality

• Width≥ 50 pixels:
JPEG qualities≥ 55
similarly well detectable
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Results: Impact of Added Noise, Resolution and Compression on Top-1 Accuracy

• Width≥ 30 pixels typically suffices for detection, even under strong compression and high noise
• Compression irrelevant for high-resolution images
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In-depth Analysis of the Influence of the Position of Characters

• Position 2 is particularly
difficult to recognize
→ number of possible
characters

• Drop at the first and last
positions
→ image cropping

• Quality factor of 1 leads
to a drastic decrease

• Overall high accuracy
for low quality images
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In-depth Analysis of the Influence of Similarity of Characters

• Network learns which characters are possible at a certain position
• Position four to seven: no letters are predicted
• Recognition rates of similar characters are lower
• Possible similarity features for characters:

• Direction and position of strokes: B↔ 8
• Horizontal projections: H↔ M↔ U

position possible characters

0 1, 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9
1 A, B, C, E, H, J, K, L, M, P, S, T, U, Z
2 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, H, I, J, K, L, M, N, P, R, S, T, U, V, X, Y, Z

3-6 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
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In-depth Analysis of the Influence of Similarity of Characters

• Compression artifacts change the appearance of characters
• Interestingly, the confusion matrix varies with compression strength
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In-depth Analysis of the Influence of Similarity of Characters

• Compression artifacts change the appearance of characters
• Interestingly, the confusion matrix varies with compression strength

quality factor char p1 p2 p3 c1 c2 c3

1 P E H 0.62 0.04 0.03

15 P M F 0.87 0.02 0.01

95 P F E 0.92 0.01 0.01
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quality factor char p1 p2 p3 c1 c2 c3

1 P E H 0.62 0.04 0.03

15 P M F 0.87 0.02 0.01

95 P F E 0.92 0.01 0.01

• Hence, forensic triage on license plates can benefits from conditioning on compression strength
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Conclusion

• Investigate the recognition of license plates in JPEG-compressed images
• Synthetic Czech dataset is created with low-resolution, noisy, and compressed images
• Trained CNN predicts the characters of the license plate
• Reliable recognition for images with

• Width≥ 30 pixels
• SNR≥ -3 dB
• JPEG quality factor≥ 15

• Top-n accuracy is a non-trivial function of
• compression strength
• character position
• inter-character similarity

• Character confusion matrix depends on compression strength,
hence forensic triage can benefit from compression-dependent confusion matrices

I am looking forward to your
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