UNIVERSITAT
ERLANGEN-NÜRNBERG

Learning to Decipher License Plates in Severely Degraded Images

MultiMedia FORensics in the WILD (MMForWILD) 2020

Paula Kaiser, Franziska Schirrmacher, Benedikt Lorch, Christian Riess
IT Security Infrastructures Lab, Computer Science, University of Erlangen-Nürnberg

License Plate Recognition in the Wild: Challenges

- Uncontrolled
environment
Unknown image
degradation
- Low image quality
- Compression

Source of the image?

License Plate Recognition in the Wild: Challenges

- Uncontrolled
environment
- Unknown image degradation
- Low image quality
- Compression

Source of the image?

License Plate Recognition in the Wild: Challenges

- Uncontrolled environment
- Unknown image degradation
- Low image quality
- Compression

Source of the image?

License Plate Recognition in the Wild: Challenges

- Uncontrolled environment
- Unknown image degradation
- Low image quality
- Compression

License Plate Recognition in the Wild: Challenges

- Uncontrolled environment
- Unknown image degradation
- Low image quality
- Compression

Source of the image?

Prior Art and Research Question

- CNNs can in principle decipher unreadable license plates

- Previous art models only low resolution and added Gaussian noise
- Reseach question: Can we also reconstruct license plates under strong compression?

Contributions

- Generating synthetic Czech license plates according to Czech regulations
- Top-1 detection accuracy under compression
- Influence of similarity and position of characters

Testing

Contributions

- Generating synthetic Czech license plates according to Czech regulations
- Top-1 detection accuracy under compression
- Influence of similarity and position of characters

Testing

Contributions

- Generating synthetic Czech license plates according to Czech regulations
- Top-1 detection accuracy under compression
- Influence of similarity and position of characters

Training
Testing

Data Generation Pipeline

- Allows to generate large number ($\approx 10 \mathrm{M}$) training examples
- Randomly drawn characters (following Czech regulations)
- Forms of degradation

Data Generation Pipeline

- Allows to generate large number ($\approx 10 \mathrm{M}$) training examples
- Randomly drawn characters (following Czech regulations)
- Forms of degradation
- Low resolution
- Gaussian noise
- JPEG compressior

Data Generation Pipeline

- Allows to generate large number ($\approx 10 \mathrm{M}$) training examples
- Randomly drawn characters (following Czech regulations)
- Forms of degradation
- Low resolution
- Gaussian noise
- JPEG compression

Data Generation Pipeline

- Allows to generate large number ($\approx 10 \mathrm{M}$) training examples
- Randomly drawn characters (following Czech regulations)
- Forms of degradation
- Low resolution
- Gaussian noise
- JPEG compression

Data Generation Pipeline

- Allows to generate large number ($\approx 10 \mathrm{M}$) training examples
- Randomly drawn characters (following Czech regulations)
- Forms of degradation
- Low resolution
- Gaussian noise
- JPEG compression

Example Images with an SNR of 3 dB

		quality factor					
		95	55	30	15	1	
\cdots	180	951.2971	$951: 2971$	$951-2971$	951.2971	［31 2971	
$\begin{aligned} & \hline 0.0 \\ & \stackrel{x}{2} \end{aligned}$	120	$\text { g94. } 2971$	9512971	$9 \mathrm{~S} 1.2974$	9572971		
$\xrightarrow{\subseteq}$	70	$\text { 莓95s. } 2971$					
$\frac{0}{3}$	30				\|		

CNN Architecture

- We study an existing feedforward convolutional neural network
- Convolutional and pooling layers extract features
- One output layer per position for character prediction

Results: JPEG Compression relative to License Plate Resolution

- Width ≤ 70 pixels: stronly impacted by JPEG quality
- Width ≥ 50 pixels: JPEG qualities ≥ 55 similarly well detectable

Results: JPEG Compression relative to License Plate Resolution

- Width ≤ 70 pixels: stronly impacted by JPEG quality
- Width ≥ 50 pixels: JPEG qualities ≥ 55 similarly well detectable

Results: JPEG Compression relative to License Plate Resolution

- Width ≤ 70 pixels: stronly impacted by JPEG quality
- Width ≥ 50 pixels: JPEG qualities ≥ 55 similarly well detectable

Results: Impact of Added Noise, Resolution and Compression on Top-1 Accuracy

- Width ≥ 30 pixels typically suffices for detection, even under strong compression and high noise
- Compression irrelevant for high-resolution images

Results: Impact of Added Noise, Resolution and Compression on Top-1 Accuracy

- Width ≥ 30 pixels typically suffices for detection, even under strong compression and high noise
- Compression irrelevant for high-resolution images

SNR: -3 dB

SNR: 3 dB

SNR: 20 dB

Results: Impact of Added Noise, Resolution and Compression on Top-1 Accuracy

- Width ≥ 30 pixels typically suffices for detection, even under strong compression and high noise
- Compression irrelevant for high-resolution images

In-depth Analysis of the Influence of the Position of Characters

- Position 2 is particularly difficult to recognize \rightarrow number of possible characters
- Dron at the first and last positions
\rightarrow image cropping
- Quality factor of 1 leads
to a drastic decrease

- Overall high accuracy for low quality images

In-depth Analysis of the Influence of the Position of Characters

- Position 2 is particularly difficult to recognize \rightarrow number of possible characters
- Drop at the first and last positions
\rightarrow image cropping
- Quality factor of 1 leads
to a drastic decrease

- Overall high accuracy for low quality images

In-depth Analysis of the Influence of the Position of Characters

- Position 2 is particularly difficult to recognize \rightarrow number of possible characters
- Drop at the first and last positions
\rightarrow image cropping
- Quality factor of 1 leads
to a drastic decrease

- Overall high accuracy
for low quality images

In-depth Analysis of the Influence of the Position of Characters

- Position 2 is particularly difficult to recognize \rightarrow number of possible characters
- Drop at the first and last positions
\rightarrow image cropping
- Quality factor of 1 leads to a drastic decrease

- Overall high accuracy
for low quality images

In-depth Analysis of the Influence of the Position of Characters

- Position 2 is particularly difficult to recognize \rightarrow number of possible characters
- Drop at the first and last positions
\rightarrow image cropping
- Quality factor of 1 leads to a drastic decrease

- Overall high accuracy for low quality images

In-depth Analysis of the Influence of Similarity of Characters

- Network learns which characters are possible at a certain position
- Position four to seven: no letters are predicted
- Recognition rates of similar characters are lower
- Possible similarity features for characters:

position	possible characters
0	$1,2,3,4,5,6,7,8,9$
1	$A, B, C, E, H, J, K, L, M, P, S, T, U, Z$
2	$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F, H, I, J, K, L, M, N, P, R, S, T, U, V, X, Y, Z$
$3-6$	$0,1,2,3,4,5,6,7,8,9$

In-depth Analysis of the Influence of Similarity of Characters

- Network learns which characters are possible at a certain position
- Position four to seven: no letters are predicted
- Recognition rates of similar characters are lower
- Possible similarity features for characters:

position	possible characters
0	$1,2,3,4,5,6,7,8,9$
1	$A, B, C, E, H, J, K, L, M, P, S, T, U, Z$
2	$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F, H, I, J, K, L, M, N, P, R, S, T, U, V, X, Y, Z$
$3-6$	$0,1,2,3,4,5,6,7,8,9$

In-depth Analysis of the Influence of Similarity of Characters

- Network learns which characters are possible at a certain position
- Position four to seven: no letters are predicted
- Recognition rates of similar characters are lower
- Possible similarity features for characters:

In-depth Analysis of the Influence of Similarity of Characters

- Network learns which characters are possible at a certain position
- Position four to seven: no letters are predicted
- Recognition rates of similar characters are lower
- Possible similarity features for characters:
- Direction and position of strokes: $\mathrm{B} \leftrightarrow 8$
- Horizontal projections: $\mathrm{H} \leftrightarrow \mathrm{M} \leftrightarrow \mathrm{U}$

In-depth Analysis of the Influence of Similarity of Characters

- Network learns which characters are possible at a certain position
- Position four to seven: no letters are predicted
- Recognition rates of similar characters are lower
- Possible similarity features for characters:
- Direction and position of strokes: $\mathrm{B} \leftrightarrow 8$
- Horizontal projections: $\mathrm{H} \leftrightarrow \mathrm{M} \leftrightarrow \mathrm{U}$

column

In-depth Analysis of the Influence of Similarity of Characters

- Compression artifacts change the appearance of characters
- Interestingly, the confusion matrix varies with compression strength

In-depth Analysis of the Influence of Similarity of Characters

- Compression artifacts change the appearance of characters
- Interestingly, the confusion matrix varies with compression strength

In-depth Analysis of the Influence of Similarity of Characters

- Compression artifacts change the appearance of characters
- Interestingly, the confusion matrix varies with compression strength

quality factor	char	p1	p2	p3	c1	c2	c3
1	P	P	E	H	0.62	0.04	0.03
15	P	P	M	F	0.87	0.02	0.01
95	P	P	F	E	0.92	0.01	0.01

In-depth Analysis of the Influence of Similarity of Characters

- Compression artifacts change the appearance of characters
- Interestingly, the confusion matrix varies with compression strength

quality factor	char	p1	p2	p3	c1	c2	c3
1	P	P	E	H	0.62	0.04	0.03
15	P	P	M	F	0.87	0.02	0.01
95	P	P	F	E	0.92	0.01	0.01

- Hence, forensic triage on license plates can benefits from conditioning on compression strength

Conclusion

- Investigate the recognition of license plates in JPEG-compressed images
- Synthetic Czech dataset is created with low-resolution, noisy, and compressed images
- Trained CNN predicts the characters of the license plate
- Reliable recognition for images with
- Width ≥ 30 pixels
- $S N R \geq-3 d B$
- JPEG quality factor ≥ 15
- Top-n accuracy is a non-trivial function of
- compression strength
- character position
- inter-character similarity
- Character confusion matrix depends on compression strength,
hence forensic triage can benefit from compression-dependent confusion matrices

Conclusion

- Investigate the recognition of license plates in JPEG-compressed images
- Synthetic Czech dataset is created with low-resolution, noisy, and compressed images
- Trained CNN predicts the characters of the license plate
- Reliable recognition for images with
- Width ≥ 30 pixels
- $S N R \geq-3 \mathrm{~dB}$
- JPEG quality factor ≥ 15
- Top- n accuracy is a non-trivial function of
- compression strength
- character position
- inter-character similarity
- Character confusion matrix depends on compression strength, hence forensic triage can benefit from compression-dependent confusion matrices

Conclusion

- Investigate the recognition of license plates in JPEG-compressed images
- Synthetic Czech dataset is created with low-resolution, noisy, and compressed images
- Trained CNN predicts the characters of the license plate
- Reliable recognition for images with
- Width ≥ 30 pixels
- $S N R \geq-3 \mathrm{~dB}$
- JPEG quality factor ≥ 15
- Top-n accuracy is a non-trivial function of
- compression strength
- character position
- inter-character similarity
- Character confusion matrix depends on compression strength, hence forensic triage can benefit from compression-dependent confusion matrices

Conclusion

- Investigate the recognition of license plates in JPEG-compressed images
- Synthetic Czech dataset is created with low-resolution, noisy, and compressed images
- Trained CNN predicts the characters of the license plate
- Reliable recognition for images with
- Width ≥ 30 pixels
- $S N R \geq-3 \mathrm{~dB}$
- JPEG quality factor ≥ 15
- Top- n accuracy is a non-trivial function of
- compression strength
- character position
- inter-character similarity
- Character confusion matrix depends on compression strength, hence forensic triage can benefit from compression-dependent confusion matrices

Conclusion

- Investigate the recognition of license plates in JPEG-compressed images
- Synthetic Czech dataset is created with low-resolution, noisy, and compressed images
- Trained CNN predicts the characters of the license plate
- Reliable recognition for images with
- Width ≥ 30 pixels
- $S N R \geq-3 \mathrm{~dB}$
- JPEG quality factor ≥ 15
- Top- n accuracy is a non-trivial function of
- compression strength
- character position
- inter-character similarity
- Character confusion matrix depends on compression strength, hence forensic triage can benefit from compression-dependent confusion matrices

Conclusion

- Investigate the recognition of license plates in JPEG-compressed images
- Synthetic Czech dataset is created with low-resolution, noisy, and compressed images
- Trained CNN predicts the characters of the license plate
- Reliable recognition for images with
- Width ≥ 30 pixels
- $S N R \geq-3 \mathrm{~dB}$
- JPEG quality factor ≥ 15
- Top- n accuracy is a non-trivial function of
- compression strength
- character position
- inter-character similarity
- Character confusion matrix depends on compression strength, hence forensic triage can benefit from compression-dependent confusion matrices

> I am looking forward to your c QUESTIONS?

