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Prior Art and Research Question

e CNNs can in principle decipher unreadable license plates

B

—> "9512971"

e Previous art models only low resolution and added Gaussian noise

* Reseach question: Can we also reconstruct license plates under strong compression?

B. Lorch, S. Agarwal, and H. Farid, “Forensic reconstruction of severely degraded license plates,” in Electronic Imaging, Jan. 2019.

Franziska Schirrmacher | IT Security Infrastructures Lab | Learning to Decipher License Plates in Severely Degraded Images



‘a

Contributions

e Generating synthetic Czech license plates according to Czech regulations
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Contributions

e Generating synthetic Czech license plates according to Czech regulations
e Top-1 detection accuracy under compression
¢ Influence of similarity and position of characters
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Data Generation Pipeline

e Allows to generate large number (= 10M) training examples
e Randomly drawn characters (following Czech regulations)
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e Randomly drawn characters (following Czech regulations)
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* Low resolution
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Data Generation Pipeline

e Allows to generate large number (= 10M) training examples
e Randomly drawn characters (following Czech regulations)
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Data Generation Pipeline

e Allows to generate large number (= 10M) training examples
e Randomly drawn characters (following Czech regulations)

e Forms of degradation

e Low resolution
e Gaussian noise
e JPEG compression

downsample

Anoise
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Example Images with an SNR of 3 dB
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CNN Architecture

¢ We study an existing feedforward convolutional neural network
e Convolutional and pooling layers extract features
¢ One output layer per position for character prediction
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B. Lorch, S. Agarwal, and H. Farid, “Forensic reconstruction of severely degraded license plates," in Electronic Imaging, Jan. 2019.
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Results: JPEG Compression relative to License Plate Resolution
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Results: JPEG Compression relative to License Plate Resolution
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Results: Impact of Added Noise, Resolution and Compression on Top-1 Accuracy
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Results: Impact of Added Noise, Resolution and Compression on Top-1 Accuracy

e Width > 30 pixels typically suffices for detection, even under strong compression and high noise
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Results: Impact of Added Noise, Resolution and Compression on Top-1 Accuracy

e Width > 30 pixels typically suffices for detection, even under strong compression and high noise

I e Compression irrelevant for high-resolution images
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In-depth Analysis of the Influence of the Position of Characters
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In-depth Analysis of the Influence of the Position of Characters

e Position 2 is particularly
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e Drop at the first and last
positions
— image cropping

top-1 accuracy

0.9

0.8

0.7

0.6

2 3 4
character position on license plate

JPEG quality
= = = Mean
s |
e 15
s 55
s 95

Franziska Schirrmacher | IT Security Infrastructures Lab | Learning to Decipher License Plates in Severely Degraded Images



In-depth Analysis of the Influence of the Position of Characters

e Position 2 is particularly T T
difficult to recognize 09~
— number of possible
characters

e Drop at the first and last
positions
— image cropping 06

JPEG quality
0.8 = == Mean
s |
e 15

e 55
e 95

top-1 accuracy

e Quality factor of 1 leads (‘, 1‘ é é 4‘1 é é

to a drastic decrease character position on license plate

Franziska Schirrmacher | IT Security Infrastructures Lab | Learning to Decipher License Plates in Severely Degraded Images



‘a

In-depth Analysis of the Influence of the Position of Characters
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e Overall high accuracy
for low quality images
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In-depth Analysis of the Influence of Similarity of Characters

e Network learns which characters are possible at a certain position

position possible characters
0 1,2,3,4,5,6,7,8,9
1 A/B,CEH JKLMPSTU?Z
2 0,1,2,3,4,56,7,89ABCDEFHLJLKLMNPRSTUVXY,Z
3-6 0,1,2,3,4,5,6,7,8,
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In-depth Analysis of the Influence of Similarity of Characters

e Network learns which characters are possible at a certain position
e Position four to seven: no letters are predicted
® Recognition rates of similar characters are lower
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In-depth Analysis of the Influence of Similarity of Characters

Network learns which characters are possible at a certain position

Position four to seven: no letters are predicted
® Recognition rates of similar characters are lower

Possible similarity features for characters:

e Direction and position of strokes: B <+ 8
e Horizontal projections: H <> M <+ U
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e Compression artifacts change the appearance of characters
¢ |Interestingly, the confusion matrix varies with compression strength

quality factor \ char pt p2 p3 ci c2 c3
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In-depth Analysis of the Influence of Similarity of Characters

e Compression artifacts change the appearance of characters
¢ |Interestingly, the confusion matrix varies with compression strength

quality factor \ char pt p2 p3 ci c2 c3

1 P P E H 062 004 003
15 P P M F 08 002 001
95 P P F E 092 001 001

* Hence, forensic triage on license plates can benefits from conditioning on compression strength
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Conclusion

¢ |nvestigate the recognition of license plates in JPEG-compressed images
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e Synthetic Czech dataset is created with low-resolution, noisy, and compressed images
¢ Trained CNN predicts the characters of the license plate
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hence forensic triage can benefit from compression-dependent confusion matrices

Franziska Schirrmacher | IT Security Infrastructures Lab | Learning to Decipher License Plates in Severely Degraded Images 12



iia

Conclusion

¢ |nvestigate the recognition of license plates in JPEG-compressed images
e Synthetic Czech dataset is created with low-resolution, noisy, and compressed images

e Trained CNN predicts the characters of the license plate
¢ Reliable recognition for images with
e Width > 30 pixels
e SNR>-3dB
e JPEG quality factor > 15
¢ Top-n accuracy is a non-trivial function of
e compression strength
e character position
® inter-character similarity
e Character confusion matrix depends on compression strength,
hence forensic triage can benefit from compression-dependent confusion matrices

I am looking forward to your _

Franziska Schirrmacher | IT Security Infrastructures Lab | Learning to Decipher License Plates in Severely Degraded Images 12



