Increased-confidence Adversarial Examples for

Deep Learning Counter-Forensics

Wenjie Li¹, Benedetta Tondi², Rongrong Ni¹, and Mauro Barni²

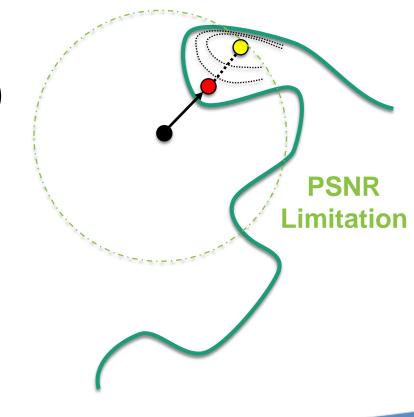
¹ Institute of Information Science, Beijing Jiaotong University, China

² Department of Information Engineering and Mathematics, University of Siena, Italy

Motivation

Transferability of Attacks

- Pattern Recognition: adversarial examples against Deep Learning (DL) are often transferable
 - Powerful attacks can be carried out in *gray-box scenario*
- Image Forensics: adversarial examples are often non-transferable^[1-3]
 - Common attack algorithms \rightarrow minimize the distortion \rightarrow the attack *fails* when the boundary is perturbed


Barni M., Kallas K., Nowroozi E., Tondi B.: On the transferability of adversarial examples against CNN-based image forensics. ICASSP, 2019.
 Gragnaniello D., Marra F., Poggi G., Verdoliva L.: Analysis of adversarial attacks against CNN-based image forgery detectors. EUSIPCO, 2018.
 Marra F., Gragnaniello D., Verdoliva L.: On the vulnerability of deep learning to adversarial attacks for camera model identification. SPIC, 2018.

How to design stronger attacks ?

➢ Boundary of DL-based classifiers are often too complicated (especially for complicated tasks).

➢Just increasing the distortion (e.g. PSNR limitation)

is not a solution.

Proposed Confidence-controlled attacks

> We modified the *stop condition* of the attack in such a way to control the

confidence of the misclassification.

Proposed Confidence-controlled attacks

We modified the *stop condition* of the attack in such a way to control the

confidence of the misclassification.

➢ Formalization (binary case)

• X = input image, with class label y = i (i=0,1); $z_i = output logits$ (before softmax)

An image X' is judged to be adversarial only if

 $z_{1-i} \cdot z_i > c,$

where c > 0 is the desired minimum *confidence*.

Proposed Confidence-controlled attacks

> We modified the *stop condition* of the attack in such a way to control the

confidence of the misclassification.

➢ Formalization (binary case)

• X = input image, with class label y = i (i=0,1); $z_i = output logits$ (before softmax)

An image X' is judged to be adversarial only if

 $z_{1-i} - z_i > c,$

where c > 0 is the desired minimum *confidence*.

>All the most common (iterative) attacks can be modified in this way.

Attack types

>(Base) Attack algorithms (gradient-based iterative attacks):

- I-FGSM: iterative fast gradient sign method
- PGD: I-FGSM with random projection of the starting point
- MI-FGSM: momentum-based I-FGSM
- C&W: an optimization-based method

Attack types

➤Comparison:

- DI²-FGSM [1]: diverse input I-FGSM
 - A state-of-the-art method for more transferable adversarial examples
 - Diverse input random transformations on the input image (random resizing and random padding)

Methodology

Transferability assessment

- Mismatch between source network (SN) and target network (TN)
 - **Cross-network** → different architectures, same dataset
 - **Cross-training** → same architecture, different datasets
 - **Cross-network-and-training** → different architectures, different datasets

Setup

Detection tasks:

- Median filtering (by a 5×5 window)
- Image resizing (downsampling by 0.8)
- Additive white Gaussian noise (AWGN, with std dev 1)

Setup

Detection tasks:

- Median filtering (by a 5×5 window)
- Image resizing (downsampling by 0.8)
- Additive white Gaussian noise (AWGN, with std dev 1)

Datasets: RAISE and VISION

Setup

Detection tasks:

- Median filtering (by a 5×5 window)
- Image resizing (downsampling by 0.8)
- Additive white Gaussian noise (AWGN, with std dev 1)

➢ Datasets: RAISE and VISION

Architectures: BSnet [1], BC+net [2], VGGnet [3]

[1] Bayar B., Stamm M.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: ACM Workshop on Info. Hiding & Multimedia Security. pp. 5-10, 2016.

[2] Barni M., Costanzo A., Nowroozi E., Tondi B.: CNN-based detection of generic contrast adjustment with JPEG post-processing. ICIP, 2018.
 [3] Simonyan K., Zisserman A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556, 2014.

➤Model training and testing:

- Training set: 2×10⁵ for BSnet, 10⁶ for BC+net, 10⁵ for VGGnet
- Testing set: 10^4 for BSnet, 5×10^4 for BC+net, 10^4 for VGGnet
- Input size: 128×128

➤Model training and testing:

- Training set: 2×10⁵ for BSnet, 10⁶ for BC+net, 10⁵ for VGGnet
- Testing set: 10^4 for BSnet, 5×10^4 for BC+net, 10^4 for VGGnet
- Input size: 128×128

➤ Detection accuracy:

- Median filtering: from 98.1% to 99.5%
- Image resizing: from 96.6% to 99.0%
- AWGN: from 98.3% to 99.9%

>To-be-attacked: 500 manipulated images from test set

>To-be-attacked: 500 manipulated images from test set

The Foolbox [1] library is used to carry out the attacks

- C&W
- PGD: stepsize = 0.005, iterations = 100
- I-FGSM: epsilons = 10, steps = 100
- MI-FGSM: epsilons = 10, steps = 100, decay_factor = 0.2

>To-be-attacked: 500 manipulated images from test set

The Foolbox [1] library is used to carry out the attacks

- C&W
- PGD: stepsize = 0.005, iterations = 100
- I-FGSM: epsilons = 10, steps = 100
- MI-FGSM: epsilons = 10, steps = 100, decay_factor = 0.2

≻DI²-FGSM: the setting in [2] is followed

• Resizing to $r \times r$ ($r \in [100,128)$) and random padding to 128×128

Rauber J., Brendel W., Bethge M.: Foolbox v0.8.0: A python toolbox to benchmark the robustness of machine learning models. 2017.
 Xie C., Zhang Z., Zhou Y., Bai S., Wang J., Ren Z., Yuille A.L.: Improving transferability of adversarial examples with input diversity. CVPR, 2019.

>SN = VGGnet on RAISE; TN = BSnet on RAISE

	C&W PGD		I-FGSM	MI-FGSM	$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$				
c	$ASR_{TN} PSN$	R ASR _{TN} PSNR	ASR _{TN} PSNR	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$			
0	8.4 69.	1 5.4 67.5	27.2 58.1	27.2 58.1	1	86.4 51.8 48.3			
12	50.6 54.	6 55.0 52.0	71.0 47.9	71.6 47.8	2	97.0 69.2 45.0			
12.5	70.1 51.	5 79.0 48.9	88.2 45.3	88.6 45.3	3	99.2 77.6 43.2			
13	91.2 48.	1 94.6 45.4	96.4 42.5	96.6 42.7	5	100 86.8 41.4			

	C&W	PGD	I-FGSM	MI-FGSM		DI ² -FGSM
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	0.2 72.0	0.2 74.5	23.2 59.7	23.4 59.7	1	91.4 52.4 48.2
50	56.0 52.2	55.6 50.3	60.6 48.9	60.4 48.9	2	98.4 69.4 44.6
80	74.0 47.8	74.0 45.8	77.8 45.1	78.8 44.8	3	99.4 77.0 42.3
100	83.6 45.2	83.6 43.5	85.4 42.9	86.2 42.7	5	100 85.4 40.2

>SN = VGGnet on RAISE; TN = BSnet on RAISE

		C&	W	PG	D	I-FG	SM	MI-F	GSM		$\mathrm{DI}^2\text{-}\mathrm{F}$	GSM	
Attack success	c	ASRTN	PSNR	ASRTN	$_{\rm N}~{ m PSNR}$	ASRTN	J PSNR	ASRTN	J PSNR	iter	$\operatorname{ASR}_{\operatorname{SN}}$	ASRTN	$_{ m J}~{ m PSNR}$
rate on TN	0	8.4	69.1	5.4	67.5	27.2	58.1	27.2	58.1	1	86.4	51.8	48.3
$\text{ASR}_{\text{SN}} \approx 100\%$	12	50.6	54.6	55.0	52.0	71.0	47.9	71.6	47.8	2	97.0	69.2	45.0
$ASN_{SN} \sim 10070$	12.5	70.1	51.5	79.0	48.9	88.2	45.3	88.6	45.3	3	99.2	77.6	43.2
	13	91.2	48.1	94.6	45.4	96.4	42.5	96.6	42.7	5	100	86.8	41.4

	C&W	PGD	I-FGSM	MI-FGSM	$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$				
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$			
0	0.2 72.0	0.2 74.5	23.2 59.7	23.4 59.7	1	91.4 52.4 48.2			
50	56.0 52.2	55.6 50.3	60.6 48.9	60.4 48.9	2	98.4 69.4 44.6			
80	74.0 47.8	74.0 45.8	77.8 45.1	78.8 44.8	3	99.4 77.0 42.3			
100	83.6 45.2	83.6 43.5	85.4 42.9	86.2 42.7	5	100 85.4 40.2			

>SN = VGGnet on RAISE; TN = BSnet on RAISE

		C&	W	PC	D	I-FG	SM	MI-F	GSM		$\mathrm{DI}^2\text{-}\mathrm{F}$	GSM	
Attack success	c	ASRTN	PSNR	ASRTI	N PSNR	ASRTN	$_{\rm J}~{ m PSNR}$	ASRTN	$_{ m J}$ PSNR	iter	ASR _{SN}	ASRTN	$_{\rm J}~{ m PSNR}$
rate on TN	0	8.4	69.1	5.4	67.5	27.2	58.1	27.2	58.1	1	86.4	51.8	48.3
$\text{ASR}_{\text{SN}} \approx 100\%$	12	50.6	54.6	55.0	52.0	71.0	47.9	71.6	47.8	2	97.0	69.2	45.0
$ASN_{SN} \sim 100 \%$	12.5	70.1	51.5	79.0	48.9	88.2	45.3	88.6	45.3	3	99.2	77.6	43.2
	13	91.2	48.1	94.6	45.4	96.4	42.5	96.6	42.7	5	100	86.8	41.4

	C&W	PGD	I-FGSM	MI-FGSM		DI ² -FGSM
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	0.2 72.0	0.2 74.5	23.2 59.7	23.4 59.7	1	91.4 52.4 48.2
50	56.0 52.2	55.6 50.3	60.6 48.9	60.4 48.9	2	98.4 69.4 44.6
80	74.0 47.8	74.0 45.8	77.8 45.1	78.8 44.8	3	99.4 77.0 42.3
100	83.6 45.2	83.6 43.5	85.4 42.9	86.2 42.7	5	100 85.4 40.2

>SN = VGGnet on RAISE; TN = BSnet on RAISE

		C&	W	PC	D	I-FG	SM	MI-F	GSM		$\mathrm{DI}^2\text{-}\mathrm{F}$	GSM	
Attack success	c	ASRTN	PSNR	ASRTI	N PSNR	ASRTN	J PSNR	ASRTN	$_{ m J}$ PSNR	iter	$\operatorname{ASR}_{\operatorname{SN}}$	ASRTN	$_{ m J}~{ m PSNR}$
rate on TN	0	8.4	69.1	5.4	67.5	27.2	58.1	27.2	58.1	1	86.4	51.8	48.3
$\text{ASR}_{\text{SN}} \approx 100\%$	12	50.6	54.6	55.0	52.0	71.0	47.9	71.6	47.8	2	97.0	69.2	45.0
$ASN_{SN} \sim 10070$	12.5	70.1	51.5	79.0	48.9	88.2	45.3	88.6	45.3	3	99.2	77.6	43.2
	13	91.2	48.1	94.6	45.4	96.4	42.5	96.6	42.7	5	100	86.8	41.4

	C&W	PGD	I-FGSM	MI-FGSM		DI ² -FGSM
c	$ASR_{TN} PSNR$	ASR _{TN} PSNR	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	0.2 72.0	0.2 74.5	23.2 59.7	23.4 59.7	1	91.4 52.4 48.2
50	56.0 52.2	55.6 50.3	60.6 48.9	60.4 48.9	2	98.4 69.4 44.6
80	74.0 47.8	74.0 45.8	77.8 45.1	78.8 44.8	3	99.4 77.0 42.3
100	83.6 45.2	83.6 43.5	85.4 42.9	86.2 42.7	5	100 85.4 40.2

>SN = VGGnet on RAISE; TN = BSnet on RAISE

		C&	W	PG	D	I-FG	SM	MI-F	GSM		DI^2 -F	GSM	
Attack success	c	ASRTN	PSNR	ASRTN	N PSNR	ASRTN	J PSNR	ASRTI	N PSNR	iter	ASR_{SI}	$_{ m N}$ ASR _{TN}	N PSNR
rate on TN	0	8.4	69.1	5.4	67.5	27.2	58.1	27.2	58.1	1	86.4	51.8	48.3
$\text{ASR}_{\text{SN}} \approx 100\%$	12	50.6	54.6	55.0	52.0	71.0	47.9	71.6	47.8	2	97.0	69.2	45.0
$ASN_{SN} \sim 10070$	12.5	70.1	51.5	79.0	48.9	88.2	45.3	88.6	45.3	3	99.2	77.6	43.2
	13	91.2	48.1	94.6	45.4	96.4	42.5	96.6	42.7	5	100	86.8	41.4

	C&W	PGD	I-FGSM	MI-FGSM		DI ² -FGSM
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	0.2 72.0	0.2 74.5	23.2 59.7	23.4 59.7	1	91.4 52.4 48.2
50	56.0 52.2	55 .6 50 .3	60.6 48.9	60.4 48.9	2	98.4 69.4 44.6
80	74.0 47.8	74.0 45.8	77.8 45.1	78.8 44.8	3	99.4 77.0 42.3
100	83.6 45.2	83.6 43.5	85.4 42.9	86.2 42.7	5	100 85.4 40.2

Results - Cross-network (Resizing)

>SN = VGGnet on RAISE; TN = BSnet on RAISE

	C&W	PGD	I-FGSM	MI-FGSM		DI ² -FGSM
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	1.2 71.5	1.8 75.4	0.4 59.3	0.4 59.2	1	30.6 2.6 48.2
17	40.4 36.8	22.0 33.4	25.0 33.3	24.8 33.3	25	100 8.6 32.6
18	53.6 34.3	39.8 30.9	39.6 30.9	37.4 30.9	35	100 23.4 30.3
19	64.4 32.2	52.0 28.9	51.6 28.9	52.6 28.9	45	100 41.0 28.2

	C&W	PGD	I-FGSM	MI-FGSM		DI ² -FGSM
c	$ASR_{TN} PSNR$	ASR _{TN} PSNR	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	0.4 68.3	0.4 66.9	0.4 58.7	0.4 58.6	1	96.8 0.2 48.2
50	82.4 45.9	65.2 42.3	66.2 41.9	63.6 41.7	3	100 33.8 41.2
80	85.2 39.3	84.0 35.5	82.4 35.3	84.6 35.4	8	100 77.0 35.3
100	80.4 34.0	82.8 31.6	83.8 31.6	82.2 31.7	15	100 87.6 31.1

Results - Cross-network (Resizing)

>SN = VGGnet on RAISE; TN = BSnet on RAISE

	C&W	PGD	I-FGSM	MI-FGSM		DI ² -FGSM
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	1.2 71.5	1.8 75.4	0.4 59.3	0.4 59.2	1	30.6 2.6 48.2
17	40.4 36.8	22.0 33.4	25.0 33.3	24.8 33.3	25	100 8.6 32.6
18	53.6 34.3	39.8 30.9	39.6 30.9	37.4 30.9	35	100 23.4 30.3
19	64.4 32.2	52.0 28.9	51.6 28.9	52.6 28.9	45	100 41.0 28.2

	C&W		PG	D	I-FG	SM	MI-F	GSM		$\mathrm{DI}^2\text{-}\mathrm{F}$	GSM	
c	ASR _{TN} PS	SNR	ASRTN	PSNR	ASRTN	J PSNR	ASRTN	J PSNR	iter	ASRSN	ASRTN	J PSNR
0	0.4 68	8.3	0.4	66.9	0.4	58.7	0.4	58.6	1	96.8	0.2	48.2
50	82.4 4	5.9	65.2	42.3	66.2	41.9	63.6	41.7	3	100	33.8	41.2
80	85.2 3	9.3	84.0	35.5	82.4	35.3	84.6	35.4	8	100	77.0	35.3
100	80.4 34	4.0	82.8	31.6	83.8	31.6	82.2	31.7	15	100	87.6	31.1

A possible explanation

>Phenomenon: a larger confidence results in less transferability

Results – Cross-training

Median Filtering: SN = BSnet on RAISE; TN = BSnet on VISION

	C&W	PGD	I-FGSM	MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	0.2 72.0	0.2 74.5	4.8 59.7	4.8 59.7	1	91.0 41.8 48.2
50	60.0 52.2	61.2 50.3	65.0 48.9	65.4 48.8	2	99.0 66.4 44.6
80	82.0 47.8	84.4 45.8	88.0 45.1	88.0 44.8	3	99.6 79.4 42.4
100	95.0 45.2	96.6 43.5	97.4 42.9	97.4 42.7	5	100 92.4 40.2

Resizing: SN = BSnet on RAISE; TN = BSnet on VISION

	C&W	PGD	I-FGSM	MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	9.8 68.3	9.8 66.9	12.8 58.7	12.8 58.6	1	97.2 49.2 48.2
30	23.8 52.5	38.6 49.6	53.0 48.0	48.6 47.8	2	99.4 72.6 43.8
40	32.8 48.9	54.2 45.7	64.0 44.7	60.2 44.6	3	99.8 80.0 41.2
50	39.2 45.9	59.8 42.3	67.2 41.7	64.2 41.7	5	100 82.0 39.1

Results – Cross-training

Median Filtering: SN = BSnet on RAISE; TN = BSnet on VISION

	C&W	PGD	I-FGSM	MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	0.2 72.0	0.2 74.5	4.8 59.7	4.8 59.7	1	91.0 41.8 48.2
50	60.0 52.2	61.2 50.3	65.0 48.9	65.4 48.8	2	99.0 66.4 44.6
80	82.0 47.8	84.4 45.8	88.0 45.1	88.0 44.8	3	99.6 79.4 42.4
100	95.0 45.2	96.6 43.5	97.4 42.9	97.4 42.7	5	100 92.4 40.2

Resizing: SN = BSnet on RAISE; TN = BSnet on VISION

	C&W	PGD	I-FGSM	MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	9.8 68.3	9.8 66.9	12.8 58.7	12.8 58.6	1	97.2 49.2 48.2
30	23.8 52.5	38.6 49.6	53.0 48.0	48.6 47.8	2	99.4 72.6 43.8
40	32.8 48.9	54.2 45.7	64.0 44.7	60.2 44.6	3	99.8 80.0 41.2
50	39.2 45.9	59.8 42.3	67.2 41.7	64.2 41.7	5	100 82.0 39.1

Results – Cross-training

Median Filtering: SN = BSnet on RAISE; TN = BSnet on VISION

	C&W	PGD	I-FGSM	MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	0.2 72.0	0.2 74.5	4.8 59.7	4.8 59.7	1	91.0 41.8 48.2
50	60.0 52.2	61.2 50.3	65.0 48.9	65.4 48.8	2	99.0 66.4 44.6
80	82.0 47.8	84.4 45.8	88.0 45.1	88.0 44.8	3	99.6 79.4 42.4
100	95.0 45.2	96.6 43.5	97.4 42.9	97.4 42.7	5	100 92.4 40.2

Resizing: SN = BSnet on RAISE; TN = BSnet on VISION

	C&W	PGD	I-FGSM	MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	9.8 68.3	9.8 66.9	12.8 58.7	12.8 58.6	1	97.2 49.2 48.2
30	23.8 52.5	38.6 49.6	53.0 48.0	48.6 47.8	2	99.4 72.6 43.8
40	32.8 48.9	54.2 45.7	64.0 44.7	60.2 44.6	3	99.8 80.0 41.2
50	39.2 45.9	59.8 42.3	67.2 41.7	64.2 41.7	5	100 82.0 39.1

Results (AWGN detection)

Cross-network: SN = VGGnet on RAISE; TN = BSnet on RAISE

	C&W	PGD	I-FGSM	MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$
с	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	1.2 64.2	5.8 60.6	10.6 56.2	10.8 56.0	1	36.0 2.2 54.0
10	19.2 57.8	20.6 54.8	40.4 52.1	41.4 51.9	3	64.4 30.6 48.6
15	52.0 53.8	50.8 51.4	79.4 49.4	77.8 49.2	5	82.2 48.0 46.8
20	79.9 49.5	82.8 46.8	91.0 45.4	92.2 45.4	10	93.2 63.6 42.7

Cross-training: SN = BSnet on RAISE; TN = BSnet on VISION

	C&W	PGD	I-FGSM	MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$
0	0.2 65.0	0.2 62.4	0.6 57.7	0.6 57.6	1	51.2 0.6 54.1
20	12.2 54.4	11.0 52.2	13.8 49.7	15.0 49.6	10	80.0 4.8 43.9
30	78.0 49.4	77.2 47.3	54.4 44.8	72.8 45.1	20	91.6 10.2 40.0
40	95.4 45.5	94.0 43.0	88.2 41.0	93.0 41.3	30	98.4 21.4 37.4

Results (AWGN detection)

Cross-network: SN = VGGnet on RAISE; TN = BSnet on RAISE

	C&W	PGD	I-FGSM	MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$
c	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	ASR_{SN} ASR_{TN} PSN
0	1.2 64.2	5.8 60.6	10.6 56.2	10.8 56.0	1	36.0 2.2 54.
10	19.2 57.8	20.6 54.8	40.4 52.1	41.4 51.9	3	64.4 30.6 48.
15	52.0 53.8	50.8 51.4	79.4 49.4	77.8 49.2	5	82.2 48.0 46.
20	79.9 49.5	82.8 46.8	91.0 45.4	92.2 45.4	10	93.2 63.6 42.

Cross-training: SN = BSnet on RAISE; TN = BSnet on VISION

	C&W	PGD	I-FGSM	MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$
с	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSN$
0	0.2 65.0	0.2 62.4	0.6 57.7	0.6 57.6	1	51.2 0.6 54.1
20	12.2 54.4	11.0 52.2	13.8 49.7	15.0 49.6	10	80.0 4.8 43.9
30	78.0 49.4	77.2 47.3	54.4 44.8	72.8 45.1	20	91.6 10.2 40.0
40	95.4 45.5	94.0 43.0	88.2 41.0	93.0 41.3	30	98.4 21.4 37.4

Results – Cross-network and training

Median Filtering: SN = BSnet on VISION; TN = BC+net on RAISE

	C&W		PGD		I-FGSM		MI-FGSM		$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$			
с	ASRTN	J PSNR	ASRTN	$_{ m J}~{ m PSNR}$	ASRTN	$_{\rm J}~{ m PSNR}$	ASRTN	N PSNR	iter	ASRSN	ASRTN	$_{ m J}~{ m PSNR}$
0	0.0	70.5	0.0	71.9	2.6	60.0	2.6	60.0	1	95.4	35.6	48.2
100	78.0	45.1	83.0	43.1	84.6	42.4	85.6	42.4	5	100	82.0	40.5

Results – Cross-network and training

Median Filtering: SN = BSnet on VISION; TN = BC+net on RAISE

	C&W	PGD	I-FGSM	MI-FGSM	$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$			
с	ASR _{TN} PSNR	ASR _{TN} PSNR	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$		
0	0.0 70.5	0.0 71.9	2.6 60.0	2.6 60.0	1	95.4 35.6 48.2		
100	78.0 45.1	83.0 43.1	84.6 42.4	85.6 42.4	5	100 82.0 40.5		

Results – Cross-network and training

Median Filtering: SN = BSnet on VISION; TN = BC+net on RAISE

	C&W	PGD	I-FGSM	MI-FGSM	$\mathrm{DI}^2 ext{-}\mathrm{FGSM}$			
с	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	$ASR_{TN} PSNR$	iter	$ASR_{SN} ASR_{TN} PSNR$		
0	0.0 70.5	0.0 71.9	2.6 60.0	2.6 60.0	1	95.4 35.6 48.2		
100	78.0 45.1	83.0 43.1	84.6 42.4	85.6 42.4	5	100 82.0 40.5		

Conclusions and future works

➤Conclusions:

- A *general strategy* is proposed to control the strength of the attacks based on the *confidence of the attack (logit level).*
- By increasing the confidence, the transferability can be improved while the PSNR remains good in most cases.

Conclusions and future works

➤Conclusions:

- A *general strategy* is proposed to control the strength of the attacks based on the *confidence of the attack (logit level).*
- By increasing the confidence, the transferability can be improved while the PSNR remains good in most cases.

➤Future works:

- Use the proposed attack as benchmark to evaluate the security of existing defenses.
- Develop more *powerful defense* mechanisms.

Thanks for your attention!