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J. Park, D. Cho, W. Ahn, and H. Lee, “Double JPEG detection in mixed JPEG quality factors using deep convolutional neural network,” in The European Conference on Computer Vision (ECCV), September 2018.

• More specifically, we start from the empirical
hypothesis that a generic q1i value is usually close to
q1i−1 and q1i+1.

• Instead of estimating each coefficient independently,
three consecutive elements in zig-zag order are
considered.
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• In this paper, a new technique able to estimate the first quantization factors for
JPEG double compressed images was presented, employing a mixed statistical
and Machine Learning approach.

• One of the main contributions was the way we employed the big amount of data
to avoid overfitting: constant matrices allow us to uncouple {q1, q2} and the use
of m and β made computational times acceptable.

• The presented solution was demonstrated to work for both custom and standard
tables thus being generalizable enough to be employed in real-case scenarios.

• Experimental tests showed the goodness of the technique outperforming state-
of-the-art results.

• Finally, the use of 1-nn to learn the distribution underlines rooms for
improvement of the proposed method.
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