In-Depth DCT Coefficient Distribution Analysis for First Quantization Estimation

S. Battiato¹, O. Giudice¹, F. Guarnera¹, **G. Puglisi**²

¹University of Catania, ²University of Cagliari

FQE: First Quantization Estimation

Consecutive quantizations introduced periodic artifacts into the histogram of DCT coefficients.

T. Bianchi and A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts," Proc. of IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, p. 1003, 2012.

F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato, "First quantization matrix estimation from double compressed JPEG images," IEEE Trans. on Information Forensics and Security, vol. 9, no. 8, pp. 1299–1310, 2014.

N. Dalmia and M. Okade, "First quantization matrix estimation for double compressed JPEG images utilizing novel dct histogram selection strategy," in Proc. of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, 2016, pp. 1–8.

Statistical approaches

Consecutive quantizations introduced periodic artifacts into the histogram of DCT coefficients.

T. Bianchi and A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts," Proc. of IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, p. 1003, 2012.

F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato, "First quantization matrix estimation from double compressed JPEG images," IEEE Trans. on Information Forensics and Security, vol. 9, no. 8, pp. 1299–1310, 2014.

N. Dalmia and M. Okade, "First quantization matrix estimation for double compressed JPEG images utilizing novel dct histogram selection strategy," in Proc. of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, 2016, pp. 1–8.

Y. Niu, B. Tondi, Y. Zhao, and M. Barni, "Primary quantization matrix estimation of double compressed JPEG images via CNN," IEEE Signal Processing Letters, vol. 27, pp. 191–195, 2020.

Statistical approaches

They usually provide satisfactory results only at specific combinations between first and second compression factors.

Consecutive quantizations introduced periodic artifacts into the histogram of DCT coefficients.

T. Bianchi and A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts," Proc. of IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, p. 1003, 2012.

F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato, "First quantization matrix estimation from double compressed JPEG images," IEEE Trans. on Information Forensics and Security, vol. 9, no. 8, pp. 1299–1310, 2014.

N. Dalmia and M. Okade, "First quantization matrix estimation for double compressed JPEG images utilizing novel dct histogram selection strategy," in Proc. of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, 2016, pp. 1–8.

Statistical approaches

They usually provide satisfactory results only at specific combinations between first and second compression factors.

Machine learning approaches

Consecutive quantizations introduced periodic artifacts into the histogram of DCT coefficients.

T. Bianchi and A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts," Proc. of IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, p. 1003, 2012.

F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato, "First quantization matrix estimation from double compressed JPEG images," IEEE Trans. on Information Forensics and Security, vol. 9, no. 8, pp. 1299–1310, 2014.

N. Dalmia and M. Okade, "First quantization matrix estimation for double compressed JPEG images utilizing novel dct histogram selection strategy," in Proc. of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, 2016, pp. 1–8.

They usually provide satisfactory results only at specific combinations between first and second compression factors.

Machine learning approaches

They could suffer from overfitting.

Consecutive quantizations introduced periodic artifacts into the histogram of DCT coefficients.

T. Bianchi and A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts," Proc. of IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, p. 1003, 2012.

F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato, "First quantization matrix estimation from double compressed JPEG images," IEEE Trans. on Information Forensics and Security, vol. 9, no. 8, pp. 1299–1310, 2014.

N. Dalmia and M. Okade, "First quantization matrix estimation for double compressed JPEG images utilizing novel dct histogram selection strategy," in Proc. of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, 2016, pp. 1–8.

8156 high resolution images in TIFF format (RAISE dataset)

crop

8156 high resolution images in TIFF format (RAISE dataset)

64×64 patches extracted from the center

l''

Double compressed images with $q1 \in \{1, ..., q1_{max}\}$ $q2 = q2_i$

Double compressed images with $q1 \in \{1, ..., q1_{max}\}$ $q2 = q2_i$

DCT histograms

Double compressed images with $q1 \in \{1, ..., q1_{max}\}$ $q2 = q2_i$

DCT histograms

Double compressed images with $q1 \in \{1, ..., q1_{max}\}$ $q2 = q2_i$

DCT histograms

 $q1_{max}$ sets of DC and AC histograms

Training Dataset Considering all the q2 in the range {1, ..., $q1_{max}$ }, $q1_{max} \times q1_{max}$ sets of DC Generation and AC histograms are generated. *l''* DC AC DC AC q1 = 1 $q2 = q2_i$ DCT histogram generation q1 = 2 $q2 = q2_i$ • $q1 = q1_{max}$ $q2 = q2_i$

Double compressed images with $q1 \in \{1, ..., q1_{max}\}$ $q2 = q2_i$

DCT histograms

 $q1_{max}$ sets of DC and AC histograms

Input: double compressed image	I'	image	compressed	double	Input:
---------------------------------------	----	-------	------------	--------	--------

Output: $\{q1_1, q1_2, \ldots, q1_k\}$

Initialization : $k, q1_{max}$

1: for i = 1 to k do

- 2: h_i : distribution of *i*-th DCT coefficient
- 3: **if** (i = 1) **then**
- 4: $D: DC_{dset}$
- 5: m : median value of h_i

6: else

- 7: $D: AC_{dset}$
- 8: β : β fitted on Laplacian h_i
- 9: end if
- 10: $q2_i$: quantization factor of Q_2 for *i*-th DCT

11: for
$$j = 1$$
 to $q \mathbf{1}_{max}$ do

12:
$$D_{j,q2_i}$$
: sub-dataset $(q1,q2)$ with $q1 = j, q2 = q2_i$

13: $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β

14:
$$d_{i,j}$$
: lower χ^2 distance between h_i and D_{j,q_2}

15: end for

16:
$$q1_i : \arg\min_{\{d_{i,j}\}}, j \in \{1, 2, \dots, q1_{max}\}$$

17: end for

17: end for

18: regularize($\{q1_1, q1_2, \dots, q1_k\}$) 19: return $\{q1_1, q1_2, \dots, q1_k\}$

Input: double compressed image I''
Output: $\{q1_1, q1_2,, q1_k\}$
Initialization : $k, q1_{max}$
1: for $i = 1$ to k do
2: h_i : distribution of <i>i</i> -th DCT coefficient
3: if $(i = 1)$ then
4: $D: DC_{dset}$
5: m : median value of h_i
6: else
7: $D: AC_{dset}$
8: $\beta : \beta$ fitted on Laplacian h_i
9: end if
10: q_{2_i} : quantization factor of Q_2 for <i>i</i> -th DCT
11: for $j = 1$ to $q 1_{max}$ do
12: $D_{j,q2_i}$: sub-dataset $(q1,q2)$ with $q1 = j, q2 = q2_i$
13: $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β
14: $d_{i,j}$: lower χ^2 distance between h_i and $D_{j,q2_i}$
15: end for
16: $q1_i : \arg\min_{\{d_{i,j}\}}, j \in \{1, 2, \dots, q1_{max}\}$
17: end for
18: regularize($\{q1_1, q1_2,, q1_k\}$)
19: return $\{q1_1, q1_2, \ldots, q1_k\}$

- **Input:** double compressed image I''
- **Output:** $\{q1_1, q1_2, \ldots, q1_k\}$

Initialization : $k, q1_{max}$

- 1: for i = 1 to k do
- 2: h_i : distribution of *i*-th DCT coefficient
- 3: **if** (i = 1) **then**
- 4: $D: DC_{dset}$
- 5: m : median value of h_i

6: else

- 7: $D: AC_{dset}$
- 8: β : β fitted on Laplacian h_i
- 9: end if
- 10: $q2_i$: quantization factor of Q_2 for *i*-th DCT

1: for
$$j = 1$$
 to $q \mathbf{1}_{max}$ do

12:
$$D_{j,q2_i}$$
: sub-dataset $(q1, q2)$ with $q1 = j, q2 = q2_i$

13: $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β

14:
$$d_{i,j}$$
: lower χ^2 distance between h_i and $D_{j,q2}$.

15: end for

16:
$$q1_i : \arg\min_{\{d_{i,j}\}}, j \in \{1, 2, \dots, q1_{max}\}$$

17: end for

18: regularize(
$$\{q1_1, q1_2, \dots, q1_k\}$$
)
19: return $\{q1_1, q1_2, \dots, q1_k\}$

Input: double compressed image I'' **Output:** $\{q1_1, q1_2, \dots, q1_k\}$ *Initialization* : $k, q1_{max}$

1: for i = 1 to k do

- 2: h_i : distribution of *i*-th DCT coefficient
- 3: **if** (i = 1) **then**
- 4: $D: DC_{dset}$
- 5: m : median value of h_i

6: else

- 7: $D: AC_{dset}$
- 8: β : β fitted on Laplacian h_i

9: end if

10: $q2_i$: quantization factor of Q_2 for *i*-th DCT

1: for
$$j = 1$$
 to $q1_{max}$ do

12:
$$D_{j,q2_i}$$
: sub-dataset $(q1, q2)$ with $q1 = j, q2 = q2_i$

13: $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β

14:
$$d_{i,j}$$
: lower χ^2 distance between h_i and D_{j,q_2}

15: end for

16:
$$q1_i : \arg\min_{\{d_{i,j}\}}, j \in \{1, 2, \dots, q1_{max}\}$$

17: end for

18: regularize(
$$\{q1_1, q1_2, \dots, q1_k\}$$
)
19: return $\{q1_1, q1_2, \dots, q1_k\}$

number of quantization factors to be estimated (e.g., 15)

maximun q1 value (e.g., 22)

Algorithm 1	The	Proposed	FQE	Technique
-------------	-----	----------	-----	-----------

Input: double compressed image I''
Output: $\{q1_1, q1_2, \dots, q1_k\}$
Initialization : $k, q1_{max}$
1: for $i = 1$ to k do
2: h_i : distribution of <i>i</i> -th DCT coefficient
3: if $(i = 1)$ then
4: $D: DC_{dset}$
5: m : median value of h_i
6: else
7: $D: AC_{dset}$
8: β : β fitted on Laplacian h_i
9: end if
10: $q2_i$: quantization factor of Q_2 for <i>i</i> -th DCT
11: for $j = 1$ to $q 1_{max}$ do
12: $D_{j,q2_i}$: sub-dataset $(q1, q2)$ with $q1 = j, q2 = q2_i$
13: $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β
14: $d_{i,j}$: lower χ^2 distance between h_i and $D_{j,q_{2_i}}$
15: end for
16: $q1_i$: $\arg\min_{\{d_{i,j}\}}, j \in \{1, 2, \dots, q1_{max}\}$
17: end for
18: regularize($\{q1_1, q1_2, \dots, q1_k\}$)
19: return $\{q1_1, q1_2, \dots, q1_k\}$

Alg	orithm 1 The Proposed FQE Technique	DCT histograms	<i>l''</i>
Inp	out: double compressed image I''	generation	
Ou	tput: $\{q1_1, q1_2, \dots, q1_k\}$		Charles of the second
	Initialization : $k, q1_{max}$		
1:	for $i = 1$ to k do		
2:	h_i : distribution of <i>i</i> -th DCT coefficient		
3:	if $(i = 1)$ then		
4:	$D: DC_{dset}$		
5:	m : median value of h_i		
6:	else		
7:	$D: AC_{dset}$		
8:	β : β fitted on Laplacian h_i		
9:	end if		
10:	$q2_i$: quantization factor of Q_2 for <i>i</i> -th DCT		
11:	for $j = 1$ to $q 1_{max}$ do		
12:	$D_{j,q2_i}$: sub-dataset $(q1,q2)$ with $q1 = j$, $q2 = q2_i$		
13:	$D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β		
14:	$d_{i,j}$: lower χ^2 distance between h_i and $D_{j,q2_i}$		
15:	end for		
16:	$q1_i : \arg\min_{\{d_{i,j}\}}, j \in \{1, 2, \dots, q1_{max}\}$		
17:	end for		
18:	regularize($\{q1_1, q1_2,, q1_k\}$)		
19:	return $\{q1_1, q1_2,, q1_k\}$		

Inp	ut: double compressed image I''
Out	tput: $\{q1_1, q1_2, \dots, q1_k\}$
	Initialization : $k, q1_{max}$
1:	for $i = 1$ to k do
2:	h_i : distribution of <i>i</i> -th DCT coefficient
3:	if $(i = 1)$ then
4:	$D: DC_{dset}$
5:	m : median value of h_i
6:	else
7:	$D: AC_{dset}$
8:	β : β fitted on Laplacian h_i
9:	and if
~	thu h
10:	$q2_i$: quantization factor of Q_2 for <i>i</i> -th DCT
10: 11:	$q2_i$: quantization factor of Q_2 for <i>i</i> -th DCT for $j = 1$ to $q1_{max}$ do
10: 11: 12:	$q2_i$: quantization factor of Q_2 for <i>i</i> -th DCT for $j = 1$ to $q1_{max}$ do $D_{j,q2_i}$: sub-dataset $(q1,q2)$ with $q1 = j$, $q2 = q2_i$
10: 11: 12: 13:	$\begin{array}{l} q2_i : \text{quantization factor of } Q_2 \text{ for } i\text{-th DCT} \\ \textbf{for } j = 1 \text{ to } q1_{max} \text{ do} \\ D_{j,q2_i} : \text{sub-dataset } (q1,q2) \text{ with } q1 = j, \ q2 = q2_i \\ D_{j,q2_i}(m,\beta) : \text{sub-range with most similar } m,\beta \end{array}$
10: 11: 12: 13: 14:	$q2_i$: quantization factor of Q_2 for <i>i</i> -th DCT for $j = 1$ to $q1_{max}$ do $D_{j,q2_i}$: sub-dataset $(q1,q2)$ with $q1 = j$, $q2 = q2_i$ $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β $d_{i,j}$: lower χ^2 distance between h_i and $D_{j,q2_i}$
10: 11: 12: 13: 14: 15:	$q2_i$: quantization factor of Q_2 for <i>i</i> -th DCT for $j = 1$ to $q1_{max}$ do $D_{j,q2_i}$: sub-dataset $(q1,q2)$ with $q1 = j$, $q2 = q2_i$ $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β $d_{i,j}$: lower χ^2 distance between h_i and $D_{j,q2_i}$ end for
10: 11: 12: 13: 14: 15: 16:	$q2_i : \text{quantization factor of } Q_2 \text{ for } i\text{-th DCT}$ $for \ j = 1 \text{ to } q1_{max} \text{ do}$ $D_{j,q2_i} : \text{sub-dataset } (q1,q2) \text{ with } q1 = j, \ q2 = q2_i$ $D_{j,q2_i}(m,\beta) : \text{sub-range with most similar } m,\beta$ $d_{i,j} : \text{lower } \chi^2 \text{ distance between } h_i \text{ and } D_{j,q2_i}$ $end \ for$ $q1_i : \arg\min_{\{d_{i,j}\}}, \ j \in \{1, 2, \dots, q1_{max}\}$
10: 11: 12: 13: 14: 15: 16: 17:	$q2_i$: quantization factor of Q_2 for <i>i</i> -th DCT for $j = 1$ to $q1_{max}$ do $D_{j,q2_i}$: sub-dataset $(q1,q2)$ with $q1 = j$, $q2 = q2_i$ $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β $d_{i,j}$: lower χ^2 distance between h_i and $D_{j,q2_i}$ end for $q1_i$: $\arg \min_{\{d_{i,j}\}}, j \in \{1, 2,, q1_{max}\}$ end for
10: 11: 12: 13: 14: 15: 16: 17: 18:	$q2_i$: quantization factor of Q_2 for <i>i</i> -th DCT for $j = 1$ to $q1_{max}$ do $D_{j,q2_i}$: sub-dataset $(q1,q2)$ with $q1 = j$, $q2 = q2_i$ $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β $d_{i,j}$: lower χ^2 distance between h_i and $D_{j,q2_i}$ end for $q1_i$: $\arg\min_{\{d_{i,j}\}}, j \in \{1, 2,, q1_{max}\}$ end for regularize($\{q1_1, q1_2,, q1_k\}$)

111 DCT histograms generation median т ... 🗼

input: double compressed image 1	Input:	double	compressed	image	I''
---	--------	--------	------------	-------	-----

Output: $\{q1_1, q1_2, \ldots, q1_k\}$

Initialization : k, $q1_{max}$

1: for i = 1 to k do

- 2: h_i : distribution of *i*-th DCT coefficient
- 3: **if** (i = 1) **then**
- 4: $D: DC_{dset}$
- 5: m : median value of h_i

6: else

- 7: $D: AC_{dset}$
- 8: β : β fitted on Laplacian h_i

9: end if

10: $q2_i$: quantization factor of Q_2 for *i*-th DCT

11: for
$$j = 1$$
 to $q \mathbf{1}_{max}$ do

12:
$$D_{j,q2_i}$$
: sub-dataset $(q1,q2)$ with $q1 = j, q2 = q2_i$

13:
$$D_{j,q2_i}(m,\beta)$$
 : sub-range with most similar m,β

14:
$$d_{i,j}$$
: lower χ^2 distance between h_i and $D_{j,q2_i}$

15: end for

16:
$$q1_i$$
: $\arg\min_{\{d_{i,j}\}}, j \in \{1, 2, \dots, q1_{max}\}$
17: end for

18: regularize($\{q1_1, q1_2, \dots, q1_k\}$) 19: return $\{q1_1, q1_2, \dots, q1_k\}$

Algorithm 1	The	Proposed	FQE	Technique
-------------	-----	----------	-----	-----------

Input: double compressed image I''
Output: $\{q1_1, q1_2, \ldots, q1_k\}$
Initialization : $k, q1_{max}$
1: for $i = 1$ to k do
2: h_i : distribution of <i>i</i> -th DCT coefficient
3: if $(i = 1)$ then
4: $D: DC_{dset}$
5: m : median value of h_i
6: else
7: $D: AC_{dset}$
8: $\beta : \beta$ fitted on Laplacian h_i
9: end if
10: q_{2_i} : quantization factor of Q_2 for <i>i</i> -th DCT
11: for $j = 1$ to $q 1_{max}$ do
12: $D_{j,q2_i}$: sub-dataset $(q1,q2)$ with $q1 = j$, $q2 = q2_i$
13: $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β
14: $d_{i,j}$: lower χ^2 distance between h_i and $D_{j,q2_i}$
15: end for
16: $q1_i : \arg\min_{\{d_{i,j}\}}, j \in \{1, 2, \dots, q1_{max}\}$
17: end for
18: regularize($\{q1_1, q1_2,, q1_k\}$)
19: return $\{q1_1, q1_2, \ldots, q1_k\}$

Input: double compressed image I''**Output:** $\{q1_1, q1_2, \ldots, q1_k\}$ Initialization : $k, q1_{max}$ *t*. for i = 1 to k do h_i : distribution of *i*-th DCT coefficient 2: if (i = 1) then 3: 4: $D: DC_{dset}$ m: median value of h_i 5: else 6: $D: AC_{dset}$ 7: β : β fitted on Laplacian h_i 8: end if 9: q_{2_i} : quantization factor of Q_2 for *i*-th DCT 10: for j = 1 to $q \mathbf{1}_{max}$ do 11: $D_{j,q2_i}$: sub-dataset (q1,q2) with q1 = j, $q2 = q2_i$ 12: $D_{j,q2_i}(m,\beta)$: sub-range with most similar m,β 13: $d_{i,j}$: lower χ^2 distance between h_i and $D_{j,q_{2i}}$ 14: end for 15: $q1_i$: $\arg\min_{\{d_{i,j}\}}, j \in \{1, 2, \dots, q1_{max}\}$ 16: 17. end for 18: regularize($\{q1_1, q1_2, ..., q1_k\}$) 19: **return** $\{q1_1, q1_2, \ldots, q1_k\}$

Sometimes, the information contained in h_i does not clearly allow the discrimination among the possible q1_i candidates.

Sometimes, the information contained in h_i does not clearly allow the discrimination among the possible q1_i candidates.

Sometimes, the information contained in h_i does not clearly allow the discrimination among the possible q1_i candidates.

q1_i candidates

• A strong minimum is not always present at varying of $q1_i$ candidates.

• Data coming from neighbors DCT coefficients can be exploited.

• Data coming from neighbors DCT coefficients can be exploited.

More specifically, we start from the empirical hypothesis that a generic q1_i value is usually close to q1_{i-1} and q1_{i+1}.

• Data coming from neighbors DCT coefficients can be exploited.

More specifically, we start from the empirical hypothesis that a generic q1_i value is usually close to q1_{i-1} and q1_{i+1}.

Distribution of $q1_i - q1_{i+1}$ built considering custom tables from Park et al. and $q1_{max} < 22$.

0

5

10

-10

-5

• Data coming from neighbors DCT coefficients can be exploited.

- More specifically, we start from the empirical hypothesis that a generic q1_i value is usually close to q1_{i-1} and q1_{i+1}.
- Instead of estimating each coefficient independently, three consecutive elements in zig-zag order are considered.

Distribution of $q1_i$ - $q1_{i+1}$ built considering custom tables from Park et al. and $q1_{max}$ <22.

• Considering $q_{1_{max}}$ as the maximum q_1 value to be estimated, $q_{1_{max}} \times q_{1_{max}} \times q_{1_{max}}$ first quantization factors combinations are taken into account.

- Considering q_{max} as the maximum q_1 value to be estimated, $q_{max} \times q_{max} \times q_{max}$ first quantization factors combinations are taken into account.
- A proper score S is then obtained by a weighted average between a data term (C_{data}) and a regularization term (C_{reg}) as follows:

$$S = wC_{data} + (1 - w)C_{reg} \quad w \in [0, 1]$$

- Considering q_{max} as the maximum q_1 value to be estimated, $q_{max} \times q_{max} \times q_{max}$ first quantization factors combinations are taken into account.
- A proper score S is then obtained by a weighted average between a data term (C_{data}) and a regularization term (C_{reg}) as follows:

$$S = wC_{data} + (1 - w)C_{reg} \quad w \in [0, 1]$$

$$C_{reg1} = \frac{|c_i - c_{i+1}| + |c_i - c_{i-1}|}{2}$$

$$C_{reg2} = \frac{|c_i - c_{i+1}| + |c_i - c_{i-1}|}{2\sqrt{c_i}}$$

$$C_{reg3} = \frac{|c_i - c_{i+1}| + |c_i - c_{i-1}|}{2c_i}$$

- Considering q_{max} as the maximum q_1 value to be estimated, $q_{max} \times q_{max} \times q_{max}$ first quantization factors combinations are taken into account.
- A proper score S is then obtained by a weighted average between a data term (C_{data}) and a regularization term (C_{reg}) as follows:

$$S = wC_{data} + (1 - w)C_{reg} \quad w \in [0, 1]$$

- Considering q_{max} as the maximum q_1 value to be estimated, $q_{max} \times q_{max} \times q_{max}$ first quantization factors combinations are taken into account.
- A proper score S is then obtained by a weighted average between a data term (C_{data}) and a regularization term (C_{reg}) as follows:

$$S = wC_{data} + (1 - w)C_{reg} \quad w \in [0, 1]$$

- Considering q_{max} as the maximum q_1 value to be estimated, $q_{max} \times q_{max} \times q_{max}$ first quantization factors combinations are taken into account.
- A proper score S is then obtained by a weighted average between a data term (C_{data}) and a regularization term (C_{reg}) as follows:

$$S = wC_{data} + (1 - w)C_{reg} \quad w \in [0, 1]$$

T. Bianchi and A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts," Proc. of IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, p. 1003, 2012.

F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato, "First quantization matrix estimation from double compressed JPEG images," IEEE Trans. on Information Forensics and Security, vol. 9, no. 8, pp. 1299–1310, 2014.

T. Bianchi and A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts," Proc. of IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, p. 1003, 2012.

F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato, "First quantization matrix estimation from double compressed JPEG images," IEEE Trans. on Information Forensics and Security, vol. 9, no. 8, pp. 1299–1310, 2014.

T. Bianchi and A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts," Proc. of IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, p. 1003, 2012.

F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato, "First quantization matrix estimation from double compressed JPEG images," IEEE Trans. on Information Forensics and Security, vol. 9, no. 8, pp. 1299–1310, 2014.

T. Bianchi and A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts," Proc. of IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, p. 1003, 2012.

F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato, "First quantization matrix estimation from double compressed JPEG images," IEEE Trans. on Information Forensics and Security, vol. 9, no. 8, pp. 1299–1310, 2014.

T. Bianchi and A. Piva, "Image forgery localization via block-grained analysis of JPEG artifacts," Proc. of IEEE Trans. on Information Forensics and Security, vol. 7, no. 3, p. 1003, 2012.

F. Galvan, G. Puglisi, A. R. Bruna, and S. Battiato, "First quantization matrix estimation from double compressed JPEG images," IEEE Trans. on Information Forensics and Security, vol. 9, no. 8, pp. 1299–1310, 2014.

Park et al. collected a dataset of JPEG quantization matrices employed in real scenarios.

Park et al. collected a dataset of JPEG quantization matrices employed in real scenarios.

To evaluate the generalization capability of the proposed solution a series of tests have been conducted considering these quantization matrices divided into three groups: Low, Mid, High.

Park et al. collected a dataset of JPEG quantization matrices employed in real scenarios.

To evaluate the generalization capability of the proposed solution a series of tests have been conducted considering these quantization matrices divided into three groups: Low, Mid, High.

Method	Dataset	Cropped Patch	Low/Low	Low/Mid	Low/High	Mid/Low	Mid/Mid	Mid/High	High/Low	High/Mid	High/High	Mean
Our	RAISE	64 × 64	0.25	0.47	0.79	0.17	0.32	0.82	0.27	0.31	0.70	0.46
Our Reg.	KAISE	04 × 04	0.30	0.53	0.81	0.22	0.37	0.84	0.25	0.33	0.75	0.49
Our	UCID	64 × 64	0.33	0.63	0.93	0.20	0.39	0.90	0.15	0.21	0.66	0.49
Our Reg.		04 × 04	0.36	0.65	0.96	0.23	0.42	0.91	0.13	0.23	0.73	0.51
Our	DAISE	199 × 199	0.36	0.60	0.85	0.29	0.44	0.87	0.25	0.32	0.74	0.52
Our Reg.	KAISE	126 × 126	0.41	0.55	0.88	0.34	0.48	0.89	0.25	0.38	0.79	0.55
Our	UCID	D 128×128	0.47	0.76	0.96	0.31	0.49	0.94	0.18	0.29	0.74	0.57
Our Reg.			0.50	0.79	0.96	0.35	0.51	0.93	0.20	0.34	0.79	0.60
Our	DAISE	E 256×256	0.45	0.69	0.88	0.38	0.52	0.89	0.25	0.36	0.77	0.58
Our Reg.	KAISE		0.49	0.73	0.90	0.40	0.55	0.90	0.30	0.45	0.82	0.62
Our	UCID	256 × 256	0.56	0.83	0.98	0.44	0.57	0.96	0.23	0.34	0.77	0.63
Our Reg.		230 × 230	0.60	0.85	0.97	0.48	0.60	0.96	0.28	0.43	0.82	0.67
Our	DAISE	519 × 519	0.50	0.74	0.91	0.44	0.57	0.91	0.26	0.38	0.77	0.61
Our Reg.	KAISE	512 × 512	0.50	0.78	0.92	0.48	0.59	0.92	0.32	0.48	0.83	0.65
Our	UCID	Full size	0.63	0.86	0.98	0.51	0.62	0.96	0.27	0.39	0.80	0.66
Our Reg.		Full Size	0.67	0.87	0.97	0.56	0.62	0.96	0.37	0.49	0.85	0.71

Park et al. collected a dataset of JPEG quantization matrices employed in real scenarios.

To evaluate the generalization capability of the proposed solution a series of tests have been conducted considering these quantization matrices divided into three groups: Low, Mid, High.

Method	Dataset	Cropped Patch	Low/Low	Low/Mid	Low/High	Mid/Low	Mid/Mid	Mid/High	High/Low	High/Mid	High/High	Mean
Our	RAISE	64 × 64	0.25	0.47	0.79	0.17	0.32	0.82	0.27	0.31	0.70	0.46
Our Reg.	RAISE	01/01	0.30	0.53	0.81	0.22	0.37	0.84	0.25	0.33	0.75	0.49
Our	UCID	64 × 64	0.33	0.63	0.93	0.20	0.39	0.90	0.15	0.21	0.66	0.49
Our Reg.		04 × 04	0.36	0.65	0.96	0.23	0.42	0.91	0.13	0.23	0.73	0.51
Our	DAISE	199 \(\cong 199	0.36	0.60	0.85	0.29	0.44	0.87	0.25	0.32	0.74	0.52
Our Reg.	KAISE	126 × 126	0.41	0.55	0.88	0.34	0.48	0.89	0.25	0.38	0.79	0.55
Our	UCID	128×128	0.47	0.76	0.96	0.31	0.49	0.94	0.18	0.29	0.74	0.57
Our Reg.	, UCID	120 × 120	0.50	0.79	0.96	0.35	0.51	0.93	0.20	0.34	0.79	0.60
Our	DAISE	256 ~ 256	0.45	0.69	0.88	0.38	0.52	0.89	0.25	0.36	0.77	0.58
Our Reg.	KAISE	250 × 250	0.49	0.73	0.90	0.40	0.55	0.90	0.30	0.45	0.82	0.62
Our	LICID	256 - 256	0.56	0.83	0.98	0.44	0.57	0.96	0.23	0.34	0.77	0.63
Our Reg.	UCID	230 × 230	0.60	0.85	0.97	0.48	0.60	0.96	0.28	0.43	0.82	0.67
Our	DAISE	519 v 519	0.50	0.74	0.91	0.44	0.57	0.91	0.26	0.38	0.77	0.61
Our Reg.	KAISE	512 × 512	0.50	0.78	0.92	0.48	0.59	0.92	0.32	0.48	0.83	0.65
Our	UCID	Full size	0.63	0.86	0.98	0.51	0.62	0.96	0.27	0.39	0.80	0.66
Our Reg.		I'un size	0.67	0.87	0.97	0.56	0.62	0.96	0.37	0.49	0.85	0.71

• In this paper, a new technique able to estimate the first quantization factors for JPEG double compressed images was presented, employing a mixed statistical and Machine Learning approach.

- In this paper, a new technique able to estimate the first quantization factors for JPEG double compressed images was presented, employing a mixed statistical and Machine Learning approach.
- One of the main contributions was the way we employed the big amount of data to avoid overfitting: constant matrices allow us to uncouple {q1, q2} and the use of m and β made computational times acceptable.

- In this paper, a new technique able to estimate the first quantization factors for JPEG double compressed images was presented, employing a mixed statistical and Machine Learning approach.
- One of the main contributions was the way we employed the big amount of data to avoid overfitting: constant matrices allow us to uncouple {q1, q2} and the use of m and β made computational times acceptable.
- The presented solution was demonstrated to work for both custom and standard tables thus being generalizable enough to be employed in real-case scenarios.

- In this paper, a new technique able to estimate the first quantization factors for JPEG double compressed images was presented, employing a mixed statistical and Machine Learning approach.
- One of the main contributions was the way we employed the big amount of data to avoid overfitting: constant matrices allow us to uncouple {q1, q2} and the use of m and β made computational times acceptable.
- The presented solution was demonstrated to work for both custom and standard tables thus being generalizable enough to be employed in real-case scenarios.
- Experimental tests showed the goodness of the technique outperforming stateof-the-art results.

- In this paper, a new technique able to estimate the first quantization factors for JPEG double compressed images was presented, employing a mixed statistical and Machine Learning approach.
- One of the main contributions was the way we employed the big amount of data to avoid overfitting: constant matrices allow us to uncouple {q1, q2} and the use of m and β made computational times acceptable.
- The presented solution was demonstrated to work for both custom and standard tables thus being generalizable enough to be employed in real-case scenarios.
- Experimental tests showed the goodness of the technique outperforming stateof-the-art results.
- Finally, the use of 1-nn to learn the distribution underlines rooms for improvement of the proposed method.

Thank you!

In-Depth DCT Coefficient Distribution Analysis for First Quantization Estimation

Sebastiano Battiato¹ battiato@dmi.unict.it

Oliver Giudice¹ giudice@dmi.unict.it Francesco Guarnera¹ francesco.guarnera@unict.it Giovanni Puglisi² puglisi@unica.it

¹University of Catania, ²University of Cagliari

