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Talk overview 
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The deformable Registration Landscape in 1995 

Optical flow  

 Horn and Schunck, Artif. Intell. 17,  1981;  

 Aggarwal and Nandhakumar, Proc. IEEE 76: 917–935,1988;  

 Barron et al., 1994. 

 

Linear elastic deformation 

 Broit, PhD 1981. 

 Bajcsy and Kovacic CVGIP 46, 1989 

 Gee, Reivich, Bajcsy, J. Comp. Assis.Tom. 17, 1993. 
 

Fluid (images & surface) 

 Christensen, Rabbitt, Miller, Phys. Med. Biol. 39, 1994.  

 Christensen, Rabbitt, Miller.IEEE Trans. Im. Proc. 5(10), 1996. 

 Thompson and Toga, IEEE TMI 15(4), 1996. 
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Mechanical deformations 

 

T is a deformation endoded by its displacement vector 

field: )()( iiii xuxxTx 

  2))(()(( xuxJxIC

)())()((),( uxJuxJxIuxF  (1) 

Similarity measure is the SSD 

The differential of this energy is considered as a force: 
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 Or as a viscous fluid (Navier-Stokes, Viscosity Coef.) 

Mechanical deformations 

The force F is applied to the image considered 

 Either as a linear elastic material (Lamé Coef.) 

Fvdivv  ))(()(2 

vuv
t

u
 )( 





Fudivu  ))(()(2  (2) 

(3) 

(4) 

 

Equations (2) and (3) are iteratively solved with F computed by (1).  

u is computed by integrating equation (4). 
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Difficulties 

 

 Differential equations are costly to solve  

 Regularity of T? 

 Small time steps, many iterations  

 Very high computation time... 
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Demons… 
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Demon  

• Computer Science  

A program or process that sits idly in the background until it is invoked to perform 

its task. 

• A person who is part mortal and part god 

Demigod, deity, divinity, god, immortal - any supernatural being worshipped as 

controlling some part of the world or some aspect of life or who is the 

personification of a force 

• Maxell's demon  

An imaginary creature who is able to sort hot molecules from cold 

molecules without expending energy, thus bringing about a general decrease in 

entropy and violating the second law of thermodynamics. 



Demons’ algorithm (MRCAS 95, CVPR96, Media98) 

Patient 1 Patient 2 
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 T0= Identity 

 

 Correction field 

 

 Regularization by Gaussian filtering  
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Demons’ algorithm (MRCAS 95, CVPR96, Media98) 

J.P. Thirion: Image Matching as a diffusion process: an analogy with Maxwell’s demons.  

Medical Image Analysis 2(3), 242-260, 1998. 
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Demons’ algorithm (MRCAS 95, CVPR96, Media98) 

R. Kikinis 

Harvard Medical School 
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Unbiased Atlases: Guimond 1999 

11 

Guimond, Meunier, Thirion. Average Brain Models: A Convergence Study. CVIU 77, 1999 

 Guimond 2001: VTK implementation (later used for ITK) 
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Intensity-based deformable registration 

 

Demons algorithm: why does it work? 

 

 + Fast, efficient  

 

 -  Do not minimize an energy 

 Difficult to analyze 

 Convergence? 

 Why does that work? 

 How to change the similarity measure? 
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Talk overview 

The early phase (Thirion) 

 

A Pair and Smooth approach (Cathier) 

 

Adaptive regularization (Stefanescu) 

 

Diffeomorphic demons (Vercauteren) 

 

Extensions and log-demons (Mansi, Yeo, Vercauteren)  
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PASHA: Pair-And-Smooth,  

Hybrid energy based Algorithm 

 SSD : measures the similarity of intensities 

 Reg : regularization energy (quadratic) 

 x , i : smoothing and noise parameters  

 C : correspondences between points (vectors field) 

 T : transformation (regularized vector field)  
 

 Correspondences (matches) as an auxiliary variable 

P. Cachier E. Bardinet, E. Dormont, X. Pennec and N. A.: Iconic Feature Based 

 Nonrigid Registration: the PASHA Algorithm, Comp. Vision and Image Understanding  

(CVIU), Special Issue on Non Rigid Registration, 89 (2-3), 272-298, 2003. 

)(Reg||||),,(),( 211
22 TTCCJISSDTCE
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Alternated minimization 
 

 Minimization with respect to C : 

 Find matches between points by optimizing ES + in the 

neighborhood of T 

 Gradient descent (1st, 2bd order, e.g. Gauss-Newton) 
 

 Minimization with respect to T : 

 Find a smooth transformation that approximates C 

 Quadratic energy  convolution 
 

 Interest: fast computation 

)(Reg||||),,(),( 211
22 TTCCJISSDTCE
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PASHA: Pair-And-Smooth,  

Hybrid energy based Algorithm 



Gauss-Newton optimization of the correspondences 

Newton optimization  

 Second order Taylor expansion of E(C) 

 Hessian matrix can be null or negative  
 

Gauss-Newton 

 1st order Taylor expansion of error 

 
 

 Solve approximated SSD Criterion around C=T 
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Gauss-Newton optimization of the correspondences 

Exact solution of the quadratic approximation of the SSD 

 Solve  

 

 By inversion lemma:  

 

 Local estimation of intensity variance: 

 Assuming isotropic voxel size:  
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Important Practical Remark 

 Norm of update is bounded by construction 

 

 

 

 Update is diffeomorphic by tri-linear interpolation! 

 

 

I
TJII

TJI
u 






22
)( 



2/1u  0)(2)()( 222
 ITJITJIITJII 

X. Pennec – MISS, July 30 2014 18 



Efficient Regularization 

Quadratic regularizer 

 

Euler Lagrange optimization of 

 

 
 

Solution: Gaussian smooting 

 

 
 

Extension to a family of quadratic filters 
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• P. Cachier and N. Ayache. Isotropic energies, filters and splines for vectorial 

regularization. J. of Math. Imaging and Vision, 20(3):251-265, May 2004. 
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• Pennec, Cachier, Ayache. Understanding the ``Demon's Algorithm'': 3D Non-Rigid 

registration by Gradient Descent. MICCAI 1999. 
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Mixed Elastic / Fluid Regularization 

 

 

 

 

 Result is still obtained by convolution:  

 

            Tn =(1-). K*Cn + .(Tn + K*(Cn -Tn-1)) 
 

 Advantages:  

 Mixes fluid and elastic  

 handles large displacements 

2||||),,(),( nnnSnn TCCJIETCE  
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P. Cachier N. A., Isotropic Energies, Filters and Splines for Vector Field Regulatization,  

J. of Mathematical Imaging and Vision, 20: 251-265, 2004 
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The Demons/PASHA Framework 

Efficient energy minimization 

)(Reg )(Reg ||||),,(),,( 2 TTTCCJIETTCE S
   

Alternate Minimization  

 on C, Correspondance Field (image forces) 

Gauss-Newton gradient descent: normalized optical flow 

 on T,  Deformation Field (regularization) 

Gaussian convolution 

 

similarity Auxiliary  Elastic + Fluid Regularity  

•P. Cachier E. Bardinet, E. Dormont, X. Pennec and N. A.: Iconic Feature Based Nonrigid Registration: 

the PASHA Algorithm, Comp. Vision and Image Understanding (CVIU), 89 (2-3), 272-298, 2003. 
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Features - Intensity -Semantics 

JF. Mangin, D. Rivière, SHFJ-CEA 

ARC BrainVar: CEA-Asclepios--Salpêtrière-Visages 
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Inter-subject registration 

Add geometric constraints 

 Correspondences C2 between sulci 

 Registration energy becomes 

 

 

 

 Algorithm in 3 steps: 

 Min. w.r.t. C1 by gradient descent 

 Min. w.r.t. C2 by nearest neighbor search 

 Min. w.r.t. T : explicit solution (convolution + spline) 

2

1121 ||||.),,(),,( TCCJISTCCE  

)(Reg..||||.. 2

2 TTC  

[ P. Cachier et al, MICCAI 2001 ] 
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Results with 5 subjects 

 

Affine Initialization Intensity only 

P. Cachier, J.-F. Mangin, X. Pennec, D. Rivière, D. Papadopoulos, J. Régis, N. A. 

Multisubject Non-Rigid Registration of Brain MRI using Intensity and Geometric Features.  

MICCAI'01, LNCS vol 2208, 734-742, 2001. 

Intensity + Features Affine Initialization Intensity only Intensity + Features 

X. Pennec – MISS, July 30 2014 



Talk overview 

The early phase (Thirion) 

 

A Pair and Smooth approach (Cathier) 

 

Adaptive regularization (Stefanescu) 

 

Diffeomorphic demons (Vercauteren) 

 

Extensions and log-demons (Mansi, Yeo, Vercauteren)  

 

 

 

 

 

 

 

 

25 X. Pennec – MISS, July 30 2014 



Towards more functional registration algorithms 

(PhD Radu Stefanescu, 2002-2005) 

 

 Adapt regularization with respect to the tissues 

 Non stationary smoothing simulating elastic/fluid 

 

 Correspondences are fuzzy or less reliable at certain places  

 Pathologies, homogeneous intensity areas 

 Register only certain areas, interpolate the remaining 

 Choice of interest points: selective registration 

 

 Fast parallel resolution (1-5 min) 

 High Performance Computing: PC cluster  
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Revisiting Regularization 

 

 

Modulate  regularization as a function of  

 1- local variability (statistics on anatomy) 

 2- local information (presence of texture/edges)  

 

 

  2||||),,(),,( TCCJIETTCE S 

 
2

2||)(|| UIdT 

R. Stefanescu, X. Pennec , N. A., Grid Powered Nonlinear Image Registration with Locally 

Adaptive Regularization, Medical Image Analysis, Sept 2004 (also MICCAI’03) 
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Inhomogeneous Regularization Implementation 

 

 

Modulate  regularization into non-stationary heat equation 

 No more Gaussian smoothing 

 Use 1st order gradient descent 

 

 

 

 Coupled PDEs with Gaussian convolutions 

 Cahill, Noble, Hawkes, MICCAI 2009 
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R. Stefanescu, X. Pennec , N. A., Grid Powered Nonlinear Image Registration with Locally 

Adaptive Regularization, Medical Image Analysis, Sept 2004 (also MICCAI’03) 
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Non Stationary Elastic Regularization 

))(( IdTDdiv
t

T






Diffusion or stiffness tensor 

 

• Encodes a priori variability 

• Image and application dependent 

• Scalar or tensor (directional) 
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Non Stationary Elastic Regularization 

))(( IdTDdiv
t

T






Inter-subject brain 

registration: 

Source image 0,01 

0,9 

)()( whitePgreyPD 

Diffusion or stiffness tensor 
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Non Stationary Fluid Regularization 

i
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u
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
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Confidence in the correction field 
 

• k ~ 1 for edges  

   (driving forces) 
 

• k ~ 0 for uniform regions  

   (interpolation) 

 
• Used to model pathologies (e.g. tumors) 

0,05 

0,65 

Inspired from non-stationary 

image diffusion 

• Weickert 1997, 2000 

• Solved using AOS scheme 
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Performance issues: no closed-form solution! 

Parallel implementation 

 Semi-implicit AOS scheme 

 Parallelization using Thomas algorithm 

 

32 

Images 256 x 256 x 60 : 

3 minutes 30 (in 2005) Ideal linear acceleration 

Observed acceleration 
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Inter-subject registration 
Affine transformation 

Correct size and position but high remaining variability in cortex and deep structures 

MR T1 Images  

256x256x120 voxels 

Atlas to patient registration 

for radiotherapy planning 
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Inter-subject registration 
Fluid regularization 

Very good image correspondence But anatomically meaningless deformation 
Jacobian [1/50;50] 
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Anatomically more meaningful deformation 
Jacobian [1/5;5] 

 

Registration in 5 min on 15 PCs 

Inter-subject registration 
Adaptive non-stationary visco-elastic regularization 
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Patient with Pathology 

Confidence 

 

Fuzzy segmentation of the resection 

Low confidence values in the resection region Patient T1-MRI 
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Atlas and Patient with Pathology   

Patient T1-MRI 

 

Atlas 

Initialization: affine registration maximizing the correlation ratio 

Tumor resection 

Data courtesy of Dr. Pierre-Yves Bondiau, M.D., Centre Antoine Lacassagne, Nice, France 

 

R. Stefanescu, O. Commowick, G. Malandain, P.-Y. Bondiau, N. A., and X. Pennec.  

Non-Rigid Atlas to Subject Registration with Pathologies for Conformal Brain Radiotherapy. 

MICCAI'04, 2004. 
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Registration Result   

Patient T1-MRI 

 

Atlas 

Resection is “preserved” 

Data courtesy of Dr. Pierre-Yves Bondiau, M.D., Centre Antoine Lacassagne, Nice, France 
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Classical (wrong) Registration 

Patient T1-MRI 

 

Atlas 

Wrong registration  

Data courtesy of Dr. Pierre-Yves Bondiau, M.D., Centre Antoine Lacassagne, Nice, France 
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Spatial Transformations Spaces 

Most spatial transformation spaces do not form vector 
spaces but only a Lie group, G 

 Rigid-body, projective, diffeomorphisms, etc. 

 

Natural operation: composition 

 f1, f2G      f = f1○f2G, where f(x)=f1(f2(x)) for x 

 

Even if addition exists, often no geometric meaning 

 f1, f2G      f = f1+f2G 

 

Many registration algorithms ignore this 

 

41 



Riemannian Metrics on diffeomorphisms 

Space of deformations 

 Transformation y=f (x) 

 Curves in transformation spaces: f (x,t) 

 Tangent vector = speed vector field  

 

Right invariant metric  

 Eulerian scheme  

 Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms [Miller, 

Trouve, Younes, Holm, Dupuis, Beg… 1998 – 2009] 

 

Geodesics determined by optimization of a time-varying vector field 

 Distance 
 

 Geodesics characterized by initial momentum 

 Initial momentum can be parameterized finite dimensional parameters 

dt
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Demons vs LDDMM 

Use a smoothing metric on the tangent space 

 Gaussian smoothing of update (~ fluid regularization) 

 Registration = transformation trajectory in some space 
 

But optimize a different regularizer 

 LDDMM regularization = trajectory energy 

 optimize the complete trajectory 

 Demons regularization = “elastic” potential 

  optimize the end-point (gradient descent) 
 

Use group properties? 

 Right invariant geodesics (LDDMM) 

 One-parameter subgroups 
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The SVF framework for  Diffeomorphisms 

Arsigny et al., MICCAI 06 

 Use one-parameter subgroups 

Exponential of a smooth vector field u is a diffeomorphism 

 u is a smooth velocity field 

 Exponential: solution at time 1 of ODE 

 ∂x(t) / ∂t = u( x(t) ) 

exp 

Velocity field Diffeomorphism 
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exp( v/8 ) ≈ Id + v/8 

exp( v/4 ) = exp(v/8)² 

exp( v/2 ) = exp(v/4)² 

exp( v ) 

•V. Arsigny, O. Commowick, X. Pennec, N. Ayache. A Log-Euclidean Framework for Statistics on 

Diffeomorphisms. In Proc. of MICCAI'06, LNCS 4190, pages 924-931, 2-4 October 2006. 

Computing the exponential 

exp( u ) = exp( u/N ) N 
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Diffeomorphic demons 

Use Lie group structure on diffeomorphisms to update 

 Large deformations by composition with group exp map 

 Efficient scaling and squaring algorithm 

 
 

 

 

 

 

 

 

 

Efficient Second Order Minimization (ESM) 

 Error    err(x) = (I-Jof) 

 Use first derivatives at 2 points to build 2nd order approx 

 
 

 Solve: 
 

 

 

)exp()()( uxx ff 

[Vercauteren et al  Neuroimage 45:(supp 1) S61-72, 2009] 
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Diffeomorphic demons 

Results 

 Really large deformations 

 Smoother and non-negative Jacobians 

 Faster convergence 

 

 

 

[Vercauteren et al  Neuroimage 45:(supp 1) S61-72, 2009] 

(Open) source-code available at http://hdl.handle.net/1926/510 
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Large scale evaluation 

Klein et al., NeuroImage 09 

 16 groups involved: MKT, INRIA, LONI, Imperial College, UPenn, 

UIowa, FMRIB, Wellcome Trust,… 

 14 registration softwares 

 80 manually segmented brains 

 Over 45,000 pairwise registrations performed 

 8 different comparison measures: Dice 

 3 independent statistical tests 

 Diffeomorphic Demons : mean rank 3, very fast 

Arno Klein, J Andersson, B A. Ardekani, J Ashburner, B Avants, MC Chiang, G E. Christensen, D. L Collins, P Hellier,  

J H Song, M Jenkinson,  C Lepage, D Rueckert, P Thompson, Tom Vercauteren, R P. Woods, J. J Mann, and R V. Parsey. 

Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage,  2009.  
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Average Rank 
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Incompressible demons 

In the myocardium, incompressiblity ensured: 

1. On the velocities (Eulerian frame): mass continuity 

equation (Saddi et al., SPIE, 2008)  

 

 

 

 

2. On the deformation (Lagrangian frame): correct 

remaining volume drifts 

Voxel 
vin vout div (v) = 0  

u 

Hard constraint |Jac (u) |= 1  
(Rohlinf et al, TMI, 2003) 
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Incompressible demons 

 Constraint on update field: div(u) = 0 

 Projection onto the space of divergence-free vector fields 

 

 

 

 

 

Solve a linear system 

• Sparse and constant stiffness matrix 

• Limited domain (only myocardium)  

 no significant overhead after preconditionning 

u = (g) = g – grad(p) 
p solution of: 

p = div(v) 
p = 0 at the domain boundaries 

g 

f 

T Mansi, JM Peyrat, M Sermesant, H Delingette, J Blanc, Y Boudjemline, and N Ayache. Physically-

Constrained Diffeomorphic Demons for the Estimation of 3D Myocardium Strain from Cine-MRI. FIMH 2009 
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Clinical Evaluation 

Patient with Repaired Tetralogy of Fallot 

56 X. Pennec – MISS, July 30 2014 



Circumferential strain measured using 

ultrasound Automatic Function Imaging (GE) 

Circumferential strain estimated from 

short axis cine MRI 

Patient with repaired Tetralogy of Fallot 
Circumferential Strain 

Patient from Necker – Enfants Malades, Paris 

 Realistic circumferential strains in ToF 
 2D strain in echo: Full 3D - No rater variability! 

Mansi et al., MICCAI 2010; Mansi et al., FIMH 2009 
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4-D Demons for Cardiac Imaging  

JM Peyrat, H Delingette, M Sermesant, X Pennec, CY Xu, and N Ayache. Registration of 4D 

Time-Series of Cardiac Images with Multichannel Diffeomorphic Demons. MICCAI 2008,  

Incorporate trajectory constraints:  

From 4D to Multichannel Registration 
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Computing the Update Step 

Vector error measure at each voxel (one for each channel): 

  erri (f)= (Ii –Jiof)  

 Taylor expansion:  err( f ○ exp( u ) ) = err(f) + err(f)t .u + O(||u||2) 

 Beware:err(f) is now a matrix! 
 

Least squares: Gauss-Newton approximation 

 

 

 Solve  

 

 Inversion lemma for scalar errors does not work any more: 

Solve a small (dim=num chanels) matrix system at each voxel x 

 
2

))(()(
2

1


x
xerrE ff  

x

xuxerrxerruE t
2

2

1
)(.))(())(() )exp( ( fff 

   ))((.))(()(.))(().)(( xerrxerrxuxerrxerr
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t ffff  

X. Pennec – MISS, July 30 2014 



60 

DTI registration 

Similarity metric: 

 Tensor comparison (distance) 

 

 

 Euclidean, Log-Euclidean…. 
 

Deforming tensor images: Tensor re-orientation  

 Affine action f*S = Df.Sof.Dft does not preserve 

eigenvalues [Alexander TMI 20(11) 2001] 

 Rotate eigenvectors only: f*S = R(Df.Sof.RDft  

 Finite-Strain (FS): Closest rotation R(f) = (Df. Dft)-½ Df 

[Zhang et al. MedIA 10(5) 2006 & TMI 26(11) 2007] (locally affine) 

 Preservation of Principal Directions (PPD)  

[Alexander and Gee CVIU 77(2), 2000, Cao et al MMBIA 2006]  

 ))((),()( 21

2 xxdistC SS  ff
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Tensor interpolation/metric 

 Euclidean and Log-Euclidean (Arsigny ’06) 

Tensor reorientation  

 Finite Strain: R(f) = (Df. Dft)-½ Df 

Exact differential 

 How a change in Df affect R? 

 Solution from Pose estimation [Dorst PAMI 27(2) 2005] 

dR = -R [ RT( tr((Df.DfT)½)I - (Df.DfT)½ )-1 ∑ (RT)i⊗(d(Df)T)i ]⊕ 

  System to solve for Gauss-Newton is now large because of (Df)  

Accurate and still fast 

 15 minutes,128x128x60, Xeon 3.2GHz 

 Better tensor alignment 

DT-REFinD: Diffusion Tensor Registration with Exact Finite-

Strain Differential 

[ Yeo, et al. DTI Registration with Exact Finite-Strain Differential. ISBI'08, TMI 2009] 
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DT-REFinD: Diffusion Tensor Registration with 

Exact Finite-Strain Differential 

T Yeo, T Vercauteren, P Fillard, JM Peyrat, X Pennec, P Golland, N Ayache, and O Clatz, 

DT-REFinD: Diffusion Tensor Registration with Exact Finite-Strain Differential. 

IEEE Transactions on Medical Imaging, 2009. 

  Moving Image M     Target Image F   Approx. Grad (dR=0)  Exact Gradient 

Harmonic Energy 

Image  

similarity 

15 minutes,128x128x60, Xeon 3.2GHz 

X. Pennec – MISS, July 30 2014 



Symmetric Log-Demons 

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, DARTEL] 
 Parameterize the deformation by its logarithm  

 Time varying (LDDMM) replaced by stationary vector fields 

 Efficient scaling and squaring methods to integrate autonomous ODEs 
 

 

Parameterize deformation by its Log: 

 Replace s  s ○ exp(u) by exp(v)  exp(v) ○ exp(u) 

 

 

 
 

 

Approximation with BCH formula [Bossa 2007] 
 exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … ) 

 Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p) 

T Vercauteren, X  Pennec, A Perchant, and N Ayache. Symmetric Log-Domain Diffeomorphic 

Registration: A Demons-based Approach, MICCAI 2008 

X. Pennec – MISS, July 30 2014 63 

Similarity 

Measures how much the 

two images differ 

Coupling 

Couples the correspondences  

with the smooth deformation 

Regularisation 

Ensures 

deformation 

smoothness 



Symmetric Log-Demons 

Use easy inverse: s-1 = exp(-v) 
 

Iteration 

 Given images I0, I1 and current transformation s=exp(v) 

 

 Forward demons forces uforw 

 

 Backward demons forces uback 

 

 Update 
 v ← ½ ( BCH(v,uforw) - BCH(-v,uback)) 

 

 Regularize (Gaussian) 
 v ← Kdiff  * vc 

T Vercauteren, X  Pennec, A Perchant, and N Ayache. Symmetric Log-Domain Diffeomorphic 

Registration: A Demons-based Approach, MICCAI 2008 
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Symmetric LCC log-demons 

Revised Symmetric LCC-Demons (based on [Cachier 2004]) 

 

X. Pennec – MISS, 

July 30 2014 

Similarity term (LCC) 

Symmetric 

similarity 

Closed form Demons-like update 

(computational efficiency preserved) 



Robustness to the intensity bias 

X. Pennec – MISS, 

July 30 2014 
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baseline synthetic follow-up 

 (ventricles expansion) 

Bias:   multiplicative additive 

Non-rigid registration  LCC-Demons vs standard log-Demons 

log-Jacobian determinant of the estimated deformation 

No bias                additive          multiplicative           add+mult 



Inter-subject registration (Klein study) 
Target overlap on 131 manually labeled brain regions  

for 144 registrations tests (CUMC12 public dataset) 

Significantly higher TO, Significantly lower TO, White boxes: no differences 

Intra-subject registration  
% whole brain 1 year changes in Alzheimer’s disease (AD) (141 AD patients, 200 healthy controls) 

 

Statistically powered measures of longitudinal brain atrophy  

X. Pennec – MISS, 

July 30 2014 
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A zoo of demons registration algorithms 
 

Demons 

 Diffeomorphic demons (Vercauteren)  

http://www.insight-journal.org/browse/publication/154  

 Spherical demons for inflated brain surfaces (Yeo / Vercauteren) 

 Multichannel demons for 4D registration of cardiac sequences (Peyrat) 

Log Demons 

 Open-source ITK implementation (Vercauteren MICCAI 2008) 

http://hdl.handle.net/10380/3060  [MICCAI Young Scientist Impact award 2013] 

 Matlab version (Hervé Lombaert) 

http://www.mathworks.com/matlabcentral/fileexchange/39194-diffeomorphic-log-

demons-image-registration 

 LCC time-consistent log-demons for AD is publicly available 

http://team.inria.fr/asclepios/software/lcclogdemons/ 

 Tensor (DTI) demons (Yeo) and log-demons (Sweet WBIR 2010):  

http://gforge.inria.fr/projects/ttk  

 3D myocardium strain / incompressible deformations using Helmoltz decomposition 

(Mansi MICCAI’10) http://med.inria.fr 

 Hierarchical multiscale polyaffine log-demons (Seiler, Media 2012) 

[MICCAI 2011 best paper award] http://web.stanford.edu/~cseiler/software.html 
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 Medical image processing and visualization software  

 Open-source, BSD license 

 Extensible via plugins 

 Provides high-level algorithms to end-users  

 Ergonomic and reactive user interface 

                                http://med.inria.fr  

INRIA teams involved: Asclepios, Athena, Parietal, Visages  

 Available registration algorithms : 

 Diffeomorphic Demons 

 Incompressible Log Demons 

 LCC Log Demons in next release (April 2014) 
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http://med.inria.fr/
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