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Abstract: Advancements in Artificial Intelligence (AI) techniques have given rise to sig-
nificant challenges in the field of Multimedia Forensics, particularly with the emergence of the
Deepfake phenomenon. Deepfakes are images, video and audio generated or altered by powerful
generative models such as Generative Adversarial Networks (GANs) [5] and Diffusion Models
(DMs) [12]. While GANs have long been recognized for their ability to generate high-quality
images, DMs offer distinct advantages, providing better control over the generative process
and the ability to create images with a wide range of styles and content [2]. In fact, DMs
have shown the potential to produce even more realistic images than GANs. The AI-generated
contents span diverse domains, including films, photography, video games, and virtual reality
productions. A major concern of the Deepfake phenomenon is the application on important
people such as politicians and celebrities to spread misinformation. However, the most alarm-
ing aspect is the misuse of GANs and DMs to create pornographic Deepfakes, posing a serious
security threat. Notably, a staggering 96% of Deepfakes available on the internet fall into this
pornographic category. The malicious use of Deepfakes extends to issues such as misinforma-
tion, cyberbullying, and privacy violation. In addition, Deepfakes have been applied in the
fields of art and entertainment, sparking ethical discussions about the limits of creativity and
authenticity. To counteract the illicit use of this powerful technology, novel forensic detection
techniques are required to identify whether multimedia data has been manipulated or altered
using GANs and DMs. Regarding image deepfake detection methods in the state of the art,
the primary focus lies in binary detection, distinguishing between Real and AI-generated im-
ages [14, 16]. Notably, some methods in the state of the art have already demonstrated the
ability to effectively differentiate between various GAN architectures [4, 7, 6, 15] and several
DM engines [13, 1, 9]. These researches showed that generative models leave unique finger-
prints in the generated multimedia data, which can be used not only to identify Deepfakes,
but also to recognize the specific architecture used during the creation process [11]. This can
be extremely important in forensics in order to reconstruct the history of the multimedia data
under analysis (forensic ballistics) [8]. In order to create increasingly sophisticated deepfakes
detection solutions, several challenges have been proposed by the scientific community such as
the Deepfake Detection Challenge (DFDC) [3] and the Face Deepfake Detection Challenge [10].
The latter has also launched a new challenge among researchers in the field: reconstructing the
orginal image from deepfakes; a task that can be extremely important in forensics.
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