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Abstract. In the last years, lots of approaches devoted to recognize
fake images have been developed. Some of them, exploiting traces left in
the frequency domain by the fake image generators, were able to achieve
satisfactory results also employing simple classifiers. In this paper, a
novel white-box evasion attack was introduced to deceive a specific class
of frequency-based deepfake detectors exploiting DCT (Discrete Cosine
Transform) features. Specifically, statistics computed from the distribu-
tion of the AC frequencies computed from fake images are aligned to the
corresponding values extracted from authentic images. The robustness of
both classical and state-of-the-art DCT-based classifiers has been tested
with respect to the proposed attack considering fake images generated
by Generative Adversarial Networks and Diffusion Models.

Keywords: Adversarial imaging - Withe-box attack - DCT analysis -
Fake images - Adversarial discriminator .

1 Introduction

Deepfakes represent one of the most complex and concerning challenges within
the contexts of cybersecurity and digital ethics. Crafted through the exploitation
of sophisticated machine learning methodologies, such as Generative Adversar-
ial Networks (GANs) [16] and Diffusion Models (DMs) [19], deepfakes have the
capability of generating realistic and convincing audiovisual content, designed to
manipulate or deceive human viewers. However, these generative models leave
behind identifiable traces in deepfake images which can be effectively detected
by deepfake detectors. These traces often manifest as clear patterns in frequency
domain and in particular in the DCT one [6, 8, 14,29]. By leveraging these dis-
tinctive features, a classifier can be trained to discriminate between deepfake
and real images by pinpointing proper traces or using specific combinations of
statistics computed from AC coefficient distributions. It is feasible to detect
unique AC coefficient statistics associated with particular generative models,
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serving then as distinctive fingerprints, effectively imprinting its signature onto
the generated images.

This paper presents an innovative white-box evasion attack strategy aimed at
deceiving deepfake detection systems which leverage on the analysis of Discrete
Cosine Transform (DCT) traces. Our approach involves refining synthetic images
by precisely manipulating the AC coefficients associated with generative models.
Specifically, taking inspiration from adversarial attack approaches [17], given a
synthetic image F', the proposed methodology introduces carefully crafted per-
turbations to the statistics computed in the DCT domain to align them to the
ones extracted from genuine images. Once the statistics alignment has been per-
formed employing the histogram matching method, the inverse DCT transform is
applied to generated a resilient synthetic image able to deceive the deepfake de-
tection mechanisms. This strategy is grounded in the understanding (white-box
evasion) that deepfake detection systems often rely on discrepancies in statistical
properties between genuine and synthetic images, such as differences in DCT co-
efficients’ distributions. By properly modifying these coefficients to match those
of genuine images, our approach aims to overcome the detection of fake images,
causing them to be classified as real. For sake of generalization, both GAN and
DM Al-engines have been exploited. The effectiveness of our method is sup-
ported by empirical evidences and experiments, which demonstrated the ability
of the method to fool deepfake detection algorithms. Our findings contribute
to the ongoing talks surrounding the arms race between deepfake generation
and detection technologies, highlighting the need for robust countermeasures to
mitigate the proliferation of misleading media content.

The paper is structured as follows: depth analysis of the state-of-the-art in
the field of deepfakes detection is presented in Section 2. Section 3 describes the
proposed solution whereas Section 4 introduces the dataset used in the experi-
mental phase. The experimental results are detailed and analysed in Section 5.
We conclude the paper by discussing the implications of the results obtained and
suggesting potential hints for future investigation and research in this area.

2 Related Works

Adversarial Machine Learning (AML) encompasses the study of vulnerabilities in
machine learning models and systems, particularly in the context of adversarial
attacks and defenses. AML techniques have been instrumental in understanding
and mitigating vulnerabilities associated with predictive methods [17]. Scientific
efforts delving into AML, including the creation of adversarial examples and
methods aimed at evading Al models, offer invaluable insights into the complex-
ity of these systems. Such insights not only enhance our comprehension of the
underlying mechanisms but also pave the way for fortifying the robustness and
trustworthiness of Al systems against emerging threats like deepfakes.

In the context of deepfake detection, DCT-based methods exploit traces left
by the generative models in the DCT domain, which can be used to differenti-
ate between authentic and manipulated images. Lewis et al. [8] illustrated the
utilization of DCT spectrum to extract spectral information from individual
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Fig. 1: Proposed pipeline. First (1), the overall statistics (in mean) of the real
dataset are extracted using DCT. Then, given a deepfake image as input (2),
the DCT is applied followed by the histogram matching algorithm. Finally, the
adversarial deepfake image is reconstructed through IDCT. The latter is given
as input to the machine learning classifiers with the aim of obtaining a misclas-
sification, i.e., real.

frames, thereby improving deepfake detection. The investigation by Frank et
al. [12] found that frequency representation surpasses state-of-the-art techniques
in detecting deep fake images automatically. Recent studies have proved the effec-
tiveness of frequency domain-based techniques in identifying distinct anomalous
fingerprints associated with deepfakes, yielding notable outcomes. Of particular
interest are deepfake detection methods leveraging the DCT. These methods en-
compass direct application of DCT to images, as demonstrated by Joel et al. [13],
as well as extraction of features from DCT blocks, akin to JPEG compression, as
showcased by Giudice et al. [14]. Both approaches have demonstrated substan-
tial effectiveness in detecting and characterizing the unique digital signatures left
by the generative architectures employed in deepfake creation. More recently in
[29] a proper analysis of the DCT traces in the generative Al-domain has been
exploited by considering several architectures, including DMs. This methodol-
ogy represents a significant advancement in both understanding and detecting
deepfakes. Recently, several adversarial methods have been proposed in litera-
ture aimed at fooling deepfake detection classifiers exploiting Fourier spectrum
discrepancies. The approach outlined in [10] identified the up-sampling layers
within generative models as a key factor contributing to these models’ inabil-
ity to accurately replicate the spectral distributions of authentic images. These
up-sampling layers often introduce significant spectral distortion into the gen-
erated images. Building on this observation, the authors showcased a method
for reliably detecting deepfakes, regardless of the underlying architecture. Fur-
thermore, the authors suggest incorporating a spectral regularization term into
the attack optimization process to mitigate this issue. The work in [3] delved
into the frequency disparities observed in fake images, demonstrating that these
disparities can be mitigated through minor changes in the final upsampling step
of the generative model. Additionally, the researchers produced counterexample
images capable of bypassing a forensic detection detector based on Fourier spec-
trum attributes. The authors of [9] have proposed two methods to mitigate the
intensity of patterns resulting from spectral artifacts. Firstly, they introduced
a CycleGAN capable of mapping images from the domain of fake images con-
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Fig. 2: Average distributions of g for each class. AC coefficients represented fol-
lowing classic “zig-zag" ordering.

taining artifacts to the domain of real images without artifacts (SpectralGAN).
Secondly, they proposed a method that incorporates the disparities in spectrum
between the two domains by simply subtracting the average spectrum differ-
ences between fake and real images (Spectrum Difference Normalization). Both
methods are then combined with a dictionary-based approach to correct discrep-
ancies in the spectral power distribution (Power Distribution Correction - PDC)
within GAN-generated fake images. The findings from [9] suggest that detec-
tors relying on the analysis of spectral characteristics of fake images may not be
resilient in detecting GAN-generated fakes. Indeed, artifacts within such spec-
tra can be easily mitigated by malicious attackers, resulting in visually similar
images post-enhancement.

3 Proposed Method

Synthetic multimedia content created through AI technologies (GAN, DM) al-
lows the generation of realistic images. Although the detection of these artificial
images is visually difficult, many classifiers have been proposed in recent years
that can distinguish real from fake images. As described in the previous Section,
a class of these approaches exploits anomalies in the frequency domain intro-
duced by the generator, achieving a good level of discrimination. To test the
robustness of these classifiers, an adversarial attack in the frequency domain has
been designed. Specifically, the proposed solution aims to bring the discriminant
frequencies of fake images closer to the real ones, confusing the classifier during
the decision process. In particular, we paid attention to the features related to
the Discrete Cosine Transform (DCT) [8,11,14,29]|. Figure 1 summarizes the
proposed pipeline.

3.1 Extraction and analysis of 3 coefficients

DCT is a Fourier-related transform widely exploited in signal processing and
data compression. Such as example, the well-known JPEG compression algo-
rithm [32], after partitioning the input image into 8 x 8 blocks applies the afore-
mentioned transformation. The values of the DCT coefficients can be regarded
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as the relative amount of the two-dimensional spatial frequencies contained in
the 64 input points. The first of these coefficients (top left, position (0,0)) called
DC, represents the average brightness level of the entire 8 x 8 block, whereas
the other ones, called AC, provide a detailed picture of the brightness varia-
tions within the block. Lam et al. [24] demonstrated that AC coefficients can be
effectively modelled by means of a zero-centered Laplacian distribution:

Plals) = g e (-] 1)

where 3 is the scale parameter estimated as o/v/2 and o corresponds to the
standard deviation of the AC coefficient distributions. Taking inspiration from
the works [14] and [11], our research focuses specifically on  parameters com-
puted from AC distributions, which showed significant discriminating properties
between real digital images and those generated through generative models.

3.2 Features manipulation

The proposed methodology consists of identifying and manipulating specific fre-
quency bands in the synthetic images in order to make them similar to the
frequency statistics of real data. To do this, the images were analyzed in the
frequency domain using the Discrete Cosine Transform. Specifically, an input
fake image F generated by a deepfake generative model G;, is divided into non-
overlapped blocks (f) of size 8 x 8 pixels. At each block, the DCT is applied as
follows:

7 7
() = LSS fay) - twu) - 1,0) @)

x=0y=0

1 .
with C(p) = { v2 1P=0
1 otherwise
intensity at coordinates (x,y) in the image block.
In order to design the proposed attack solution, the average values of 8 com-
puted from the AC frequency distributions have been analysed. Specifically, three

classes have been considered: real and deepfake images generated by GANs and

, t(z,€) = cos [%} and f(z,y) the pixel
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GAN

Fig. 4: Examples of images at varying numbers of manipulated frequencies.

Diffusion Models (see Section 4 for further details about the employed dataset).
As can be seen from Figure 2, average (3 values related to the three classes, al-
though sharing a similar decreasing pattern, are quite discriminative and have
been exploited to design effective fake image detectors.

Given then a fake image F with beta values §;(F) (i € 1,2,...,63) and
knowing the average (3 values of real images 8] the main idea of the proposed
attack is to perform a proper perturbation of input image to move its §;(F)
to B8] deceiving then the classifiers based on these DCT statistics. It is easy
to understand that the choice of AC frequencies to perturb is relevant for the
generation of the output image. The authors of [29] carried out analyses to
understand the most discriminative ones training a proper classifier and selecting
just 35 AC frequencies to generate the corresponding adversarial images. Given
the fake input image F' the proposed approach can be summarized as follows:

1. image partitioning into 8 x 8 blocks and DCT application on each block;

2. extraction of the histograms h;(F) for each AC frequency to be perturbed;

3. generation of ideal histogram h; from ] values related to real distributions
(only for AC frequencies to be modified);

4. generation of perturbed histogram A7 (F) through histogram matching [15]
between h;(F) and h] (example is shown in Figure 3);

5. reconstruction of 8 x 8 blocks after perturbation;

6. inverse DCT (IDCT) on each 8 x 8 block with truncation on range 0 — 255
to reconstruct the perturbed image.

4 Dataset Details

The dataset employed to properly evaluate the proposed solution was built start-
ing from a subset of [29]: 4,449 images generated by different GAN architectures,
and 1,449 images produced by Diffusion Models. Although, imbalance between
classes, tests are conducted separately without involving any machine learning
solution in the generation of the adversarial image (see Section 5). As regards
real data we collected a total of 40.000 images from CelebA [26], FFHQ [22], and
other different. sources [25,7] (10.000 for each source). In accordance with the
research goals, we prioritized the diversity of the inputs in order to guarantee
that the dataset adequately represents a range of image generation techniques,
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Architecture # Image

Type Name Used
GauGAN [28] 4000
BigGAN [2] 2600
ProGAN [20] 1000
StarGAN [5] 6848
GAN
AttGAN [18] 6005
GENERATED GDWCT [4] 3367
CycleGAN [33] 1047
StyleGAN [22] 4705
StyleGAN2 [23] 7000
StyleGAN3 [21] 1000
DALL-E 2 [30] 3423
DM DALL-E MINI 1000
GENERATED Glide [27] 2000

Latent Diffusion [31] 4000
Stable Diffusion 5000

Table 1: Number of images used per category (GAN, DM).

regardless of their individual content. Note that the generation of the adversar-
ial images was done as described in Section 3, working only on the luminance
channel. For this reason the adversarial dataset is composed of grayscale images
(see example in Figure 4). Each of the aforementioned image (4,449 from GAN
and 1,449 from DM) has been perturbed employing 7 different sets of 87 gen-
erating a total of 41,286 grayscale adversarial images (31,143 from GAN and
10,143 from DM). Specifically, different attacks have been conducted modifying
an increasing number of AC frequencies (i.e., 5, 10, 15, 20, 25, 30, 35) starting
from the highest to the lowest ones. Table 1 summarizes the number of collected
images?.

5 Experimental Results

As described in Section 3, the proposed solution modifies the fake image F' in
the frequency domain in order to make it similar, in terms of DCT statistics, to
the corresponding ones of the real pictures. However, it is evident that carry out
too strong perturbations on DCT distributions could cause artifact visible for
human eyes. In order to validate our method a series of experiments has been
then performed. In particular, some variables were introduced in the tests as
follows:

3 Stable Diffusion and DALL-E MINI were gener-
ated from https://github.com/CompVis/stable-diffusion;
https://github.com /borisdayma/dalle-mini.
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Fig.5: Experimental results of the proposed method on images generated by
GAN (a) and DM (b). Different columns are referred to the specific employed
classifiers. For each plot, the percentage of images classified as real, images classi-
fied correctly, and images classified as the opposite generative model technology
are given.

— The generative models: the experiments were performed considering both
GAN and DM in order to understand the different behavior of different
classes of generators;

— The modified frequencies: considering the set of 35 AC frequencies selected
in [29], the proposed method was tested modifying an increasing number of
frequencies from the highest to the lowest ones (from 5 to 35 at step of 5),
to understand the right trade-off between the quality of the visual output
and the effectiveness of the attack;

— The classifiers: 3 different classifiers based on Machine Learning approaches
(K-NN, GBoost and Random Forest) were tested on adversarial images gen-
erated by our method.

Some examples of modified images are reported in Figure 4 whereas results
achieved by the proposed attack considering three classifiers have been presented
in Figure 5. For each plot, classification performances obtained with the original
deepfake images (label 0) as input are compared with those achieved taking into
account the modified pictures at increasing of the number of involved frequencies
{5,10,15,...,35}. Specifically, the number of deepfake images classified as real,
the number of images classified correctly, and the number of images classified as
the opposite generative model technology (GAN or DM) are highlighted in each
plot. In order to perform a peculiar and accurate analysis on the performance
of these attacks, two different graphs were created with respect to the type of
generative model (GAN and DM).
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Fig. 6: (a) Images of Figure 4 with 35 manipulated frequencies. Artifacts in the
form of blocking are present. (b) Image with 20 manipulated frequencies, in
which the attack introduced salt-and-pepper noise in the teeth and hair.

From the obtained results, it can be observed that, in general, the perfor-
mance of all classifiers collapses, even when a minimum number of frequencies is
changed. It can be seen, however, that DM images seem to be more resistant to
these types of attacks, as the classification performance decreases more linearly
than GAN-generated images. Moreover, the most robust classifier turns out to
be K-NN. Thus, it is very likely that deepfake detectors based on more sophis-
ticated metric learning approaches may be more robust to this type of attack.
The Random Forest and GBoost classifiers are based on well-defined "rules and
weights" and, therefore, turn out to be less robust. In the latter scenario, we get
very good results in solving the task at hand.

The quality of the attacked images plays a key role in adversarial attacks,
as image quality must be preserved despite the attack. The proposed approach
succeeds in fooling classifiers, but from a visual and perceptual perspective, the
more frequencies are attacked, and the more artifacts are introduced into the
images (Figure 6). It can be observed that as the number of frequencies attacked
increases, the blocking effect (due to the nature of the proposed pipeline), is
emphasized. In other cases, such as the one shown in Figure 6 (b), even though
minimally and not so visually perceptible, the images after the attack of 20
frequencies contain salt-and-pepper noise. In order to investigate, from a quanti-
tative point of view, the structural difference between the attacked and original
images, the SSIM and PSNR metrics were calculated (averaged) on the GAN
and DM sets separately. The SSIM metric will return a value that will tend to
—1 in the case where the images are very different from each other, 1 on the
other hand in the case where the compared images are very similar. The higher
the PSNR metric, the greater the "similarity" to the original image.
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Fig.7: (a) Mean of SSIM and (b) mean of PSNR calculated for all involved
images as the number of manipulated frequencies varies.

From Figure 7, it can be deduced that by attacking a maximum of 15 fre-
quencies, the image not only contains fewer artifacts, but still tends to be very
close to the original, and the classifiers (especially Random Forest and GBoost)
fail to correctly classify the data under analysis.

6 Conclusion and Future Works

In this work, we perform an evasion attack on DCT-based deepfake detection
systems by generating perturbations that are imperceptible to the human eye but
significantly alter the DCT coeflicients of the image. These perturbations cause
misclassification or evasion of the detection system, leading to the acceptance of
deepfake images as authentic. Defense mechanisms against adversarial attacks
in DCT-based deepfake detection often involve robust feature extraction and
classifier training. By incorporating robust feature extraction techniques that are
less susceptible to adversarial perturbations, and training classifiers on diverse
datasets that include adversarial examples, it is possible to improve the resilience
of detection systems against adversarial attacks [1]. This paper provides useful
insights to further investigate the interplay between adversarial machine learning
and DCT-based methods, which is pivotal for developing more robust deepfake
detection systems capable to prevent adversarial attacks. Indeed, the proposed
evasion method not only exposes vulnerabilities but also provides insights for
defining more resilient AI models that can effectively counter such sophisticated
attacks. Consequently, ongoing research in this area aims to further enhance the
effectiveness and reliability of deepfake detection methods in the face of evolving
adversarial threats.
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