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Abstract—The estimation of brain atrophy is crucial for eval-
uating brain diseases and analyzing neurodegeneration. Existing
methods for computing atrophy maps often suffer from lengthy
processing times due to the computational cost of multi-step
processing. In this work, we propose a novel technique for
atrophy map calculation using a single U-net-based architecture.
This approach consolidates multiple traditional medical imaging
processing steps into a single process, aiming to accelerate the
computational time required. Specifically, our method estimates
structural changes by generating a flow map from two longitu-
dinal Magnetic Resonance Imaging (MRI) scans of the same
subject. We trained and evaluated our system on a dataset
comprising 2000 T1-weighted MRI scans sourced from two
different public datasets on Alzheimer’s Disease. Experimental
results demonstrate a considerable reduction in execution time
while maintaining atrophy mapping performance comparable
to state-of-the-art solutions. We believe that our pipeline could
significantly benefit clinical applications for measuring brain
atrophy, especially in scenarios requiring the evaluation of large
cohorts, such as clinical trials. Our code is freely available at
https://github.com/Efficient Atrophy Mapping: A Single-Step U-
net Approach for Rapid Brain Change Estimation.

Index Terms—Atrophy map, Medical Imaging, MRI

I. INTRODUCTION

Brain atrophy refers to the gradual loss of brain tissue,
causing a consequent decline in brain function [1]. While it
can be caused by the normal aging process, it also plays a
pivotal role in the pathophysiology and clinical manifestation
of neurodegenerative diseases. This progressive loss of
neuronal tissue can affect various brain regions, leading to
diverse symptomatology depending on the specific disease and
affected areas. In Alzheimer’s disease, for instance, neuronal
depletion in the hippocampus and cerebral cortex correlates
strongly with memory deficits and cognitive decline [2], [3].
Parkinson’s disease is characterized by the degeneration of

dopaminergic neurons in the substantia nigra, resulting in
movement disorders such as tremors and rigidity [4]. Multiple
sclerosis, conversely, involves demyelination and neuronal
loss, manifesting in symptoms like coordination problems,
muscle weakness, and cognitive dysfunction [5], [6]. Given
the significant impact of brain atrophy on patient outcomes,
accurate measurement and quantification through MRI scans
have become crucial for the diagnosis, monitoring, and
management of neurodegenerative conditions [7]–[9].

Advanced neuroimaging techniques and analytical methods
have been developed to address the need for atrophy
quantification. Conventional approaches include voxel-based
morphometry, which generates statistical parametric maps
to assess regional differences in brain tissue between
two time points, thereby precisely quantifying volumetric
changes [10]. Other traditional computational methods, such as
Deformation-Based Morphometry (DBM) [11] and Boundary
Shift Integral (BSI) [12], compare image intensities to derive
atrophy measures, but they often misinterpret these differences
as changes in brain volume, leading to increased variance
in measurements. Another method called Structural Image
Evaluation using Normalization of Atrophy (SIENA) [13],
is highly accurate but is limited by long processing times,
which can hinder its practical usage. Recently, deep learning
techniques, have been increasingly explored to enhance the
accuracy of analyzing MRI scans for diagnostic purposes in
this context [14], [15]. These innovative methods leverage the
power of data-driven solutions to automatically learn intricate
patterns from neuroimaging data, offering the potential to
significantly improve our understanding of brain atrophy and
its implications. Ultimately, advancements in brain atrophy
quantification [16] could benefit clinical practice and patient



care by enabling earlier diagnosis, more precise monitoring of
disease progression, and improved evaluation of therapeutic
interventions [17].

Building upon recent advancements in deep learning,
we propose a novel approach to address the limitations of
traditional computational methods for atrophy quantification.
Our methodology involves training a 3D U-Net architecture
to estimate the flow field between two MRI scans of the
same patient. Subsequently, we utilize the predicted flow
field to quantify brain atrophy. While conventional techniques
for flow field computation, such as those employed in
the SIENA, are computationally intensive, our end-to-end
prediction approach offers a substantial acceleration of the
atrophy quantification process. We evaluate our method
against SIENA, emphasizing the significant reduction in
execution time. To assess the quality of the generated flow
fields, we calculate the Percentage of Brain Volume Change
(PBVC) using our estimated flow field and compare it to
that derived from SIENA. To the best of our knowledge, this
study represents the first implementation of an end-to-end
3D U-Net architecture specifically designed for efficient
atrophy quantification. We posit that this enhancement will
facilitate the atrophy quantification process in large-scale
neuroimaging datasets, potentially accelerating research in
neurodegenerative disorders.

The remainder of this paper is organized as follows: Section
II reviews the state-of-the-art in the field, Section III describes
the proposed approach with details about the dataset and
model, Section IV presents qualitative and quantitative results,
and finally, Section V concludes the paper with considerations
about this work and future directions.

II. RELATED WORK

This section reviews methodologies and models relevant to
our study, highlighting their strengths and limitations. Initial
work in this area primarily focused on just diagnostic predic-
tion using longitudinal data but they could not provide spatial
maps or segmentations of affected regions, which are crucial
for interpreting and understanding disease progression. For ex-
ample, Recurrent Neural Networks (RNNs) and convolutional
recurrent networks were employed for diagnostic prediction
using MRI [18] or PET scans [19] in Alzheimer’s Disease
(AD). However, a main issue with these early approaches
is their sensitivity to the irregular temporal spacing between
instances, which is common in disease modeling.

To address this issue, mixed-effects models were proposed
to explicitly describe each patient’s progression, allowing
sampling at any time point [20], [21]. Through temporal
reparametrization, all patients are aligned on a common
pathological timeline, with individual trajectories modeled as
variations around a reference trajectory. While mixed-effects
models have become a standard in longitudinal modeling,
providing insights into disease progression, they typically rely
on explicit labels, such as the patient’s age at each visit.

In an effort to reduce the need for labeled data, several self-
supervised approaches have been proposed. These approaches
often combine deep learning techniques with mixed-effects
models for longitudinal modeling of disease progression. One
such approach [22] utilizes an RNN to produce the parameters
of a mixed-effects model, describing patients’ trajectories as
straight lines in the latent space of a Variational Autoencoder
(VAE). By leveraging the unsupervised learning capabilities
of VAEs, this method can learn meaningful representations of
disease progression without relying on explicit labels like the
patient’s age.

Other self-supervised methods, such as [23] and [24],
employ VAE encoders to learn latent temporal and spatial
variables, separating temporal progression from the patient’s
intrinsic characteristics. Longitudinal VAE architectures, like
Gaussian Process VAEs (GP-VAE) [25] were also introduced
to provide a more general prior for the posterior distribution
in the form of a Gaussian Process dependent on age and
covariates [26], [27]. Unlike the above methods that focus on
modeling disease progression and trajectories, another cate-
gory of approaches aims to generate spatial maps or segmenta-
tions of the affected regions, complementing the insights from
longitudinal modeling. Diffeomorphic methods, such as those
based on geodesic regression [28], [29], learn deformation
maps to model the effect of time on a subject’s images.
However, these methods exhibit limited long-term predictive
abilities compared to mixed-effects models, which aggregate
information from subjects at different disease stages [30]. In
the context of neuroimaging, where quantifying brain atrophy
is crucial for understanding and monitoring neurodegenera-
tive diseases like multiple sclerosis and Alzheimer’s disease,
SIENA [13] is a well-regarded computational method that
calculates a flow map. This flow map shows the displacement
of voxels over time, indicating areas of increased or decreased
atrophy in the brain. While SIENA is not based on deep
learning, its ability to generate this flow map sets it apart
from other traditional methods. However, SIENA’s reliance on
computational modeling leads to long execution times, as the
flow map calculation depends on preliminary results obtained
during the model’s execution.

This limitation has motivated the exploration of deep learn-
ing techniques, which have shown promise in medical image
segmentation tasks. The introduction of the U-Net architec-
ture [31] has been a significant development in this regard,
with its distinctive ”skip connections” allowing direct infor-
mation flow from lower to higher levels, enabling the model
to maintain crucial spatial details for accurate segmentation.
Compared to other deep learning architectures, the U-Net is
more compact, reducing the total number of parameters and
improving computational efficiency and training speed.

Building upon the segmentation capabilities of [31], we
propose to use a 3D U-Net to embed the results obtained
by SIENA into an end-to-end deep neural network. Our
model, along with SIENA, is among the few that allow
for the calculation of this flow map, which is essential for
quantifying brain atrophy. However, our approach circumvents



Fig. 1. An example of MRI scan from OASIS-3 [32]. From left to right, the
figures show the axial, coronal and sagittal views.

the computational limitations of SIENA by eliminating the
need for intermediate results in the flow map calculation. By
leveraging the efficiency and accuracy of the 3D U-Net, our
method aims to provide a more rapid and precise estimation
of brain atrophy, overcoming the computational bottlenecks of
traditional computational methods like SIENA.

III. METHOD

In this section, we first describe the dataset used in our
experiments, then the preprocessing phase, and finally the
implementation of the proposed architecture.

A. Dataset

We collected 3D T1-weighted MRIs from two public
datasets, ADNI [33] and OASIS-3 [32]. We selected 1000
pairs (MRIA and MRIB), focusing on images with signif-
icant atrophy as measured by Eq. 1. This selection ensures
that the dataset includes cases with substantial changes in
brain structure, which is critical for training models aimed
at detecting and analyzing neurodegenerative conditions. By
selecting images with greater atrophy, we aim to enhance the
model’s ability to recognize and quantify significant patholog-
ical changes, ultimately improving its diagnostic accuracy and
robustness.

d =
|MRIA −MRIB |

max(MRIA,MRIB)
(1)

The final dataset comprises patients aged from 55 to 97
years and is balanced in terms of gender (547 men and 453
women). In our experiment, we use 70% of the scans for the
training set, 20% for the validation set, and 10% for the test
set. An example of an input MRI is shown in Fig. 1.

To assess our pipeline, we use an intermediate output of
SIENA as ground truth (GT). As mentioned above, SIENA
is a well-known approach in neuroimaging that estimates the
PBVC from MRIA to MRIB . Below is a brief summary of
the steps implemented by SIENA:

• Brain Extraction Tool (BET): This method is used to
perform brain extraction on both MRIs.

• Skull Extraction: This step is used for both skull removal
and MRI alignment.

• Registration: This involves the use of FMRIB’s Linear
Image Registration Tool (FLIRT) for aligning the images.

• Masking: This step is used to obtain better-registered
images by applying masks to the images.

• Change Analysis: This step extracts the motion field to
analyze changes between the two MRIs.

An example of the output of SIENA is shown in Fig. 2. As
shown in the figure, SIENA processes two MRI scans taken
at different times and generates a flow field. The second MRI,
compared to the first, reveals a deteriorated health condition.
This is evidenced by the increased dark regions in the frontal
lobe and the expansion of the dark areas in the central brain
region, corresponding to the ventricles.

The flow field creates an atrophy map (our GT) showing
how each voxel changes from MRIA to MRIB . Black areas
in the GT indicate an increase in atrophy, while white areas
indicate a decrease. In our study, we do not account for
a decrease in atrophy, since we carry out its calculation
considering two MRIs where the first precedes the second.

B. Preprocessing

In our study, a preprocessing step is applied to all MRI scans
to ensure data consistency and eliminate irrelevant variations.
The preprocessing pipeline comprises several key stages. Ini-
tially, all MRI scans undergo registration to the Montreal Neu-
rological Institute (MNI) template, ensuring spatial alignment
across different subjects for accurate inter-subject comparison.
Following registration, non-brain tissues are removed from
the images through skull stripping. Subsequently, intensity
normalization is performed to standardize pixel values across
all images within the range of -1 to 1. This normalization
mitigates variations stemming from acquisition parameters
or scanner discrepancies. Finally, each MRI is rescaled to
121× 145× 113 voxels, reducing the size by half along each
axis. This rescaling minimizes computational costs associated
with processing whole scans and expedites data processing
without significant loss of anatomical detail.

C. CNN architecture

In this section, we detail our pipeline. The objective of
our solution is to estimate brain changes through a single-
step method. To achieve this, we employed a 3D U-Net
architecture (Fig. 3), using the implementation available from

MRIA MRIB GT

Input Output

Fig. 2. The first two images show the central slices of the MRIs (baseline
and follow-up) used as input to SIENA. The last image displays the output
(our ground truth) obtained from SIENA.
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Fig. 3. 3D U-Net architecture employed. A and B represent MRIA and MRIB , respectively. The rectangle labeled Conv represents a two-channel convolution,
while each gray-colored rectangle represents the layers used in the downsampling phase, with the number of input and output features indicated inside. Pink-
colored rectangles represent the part of the network responsible for the upsampling phase, with concatenation to the encoder feature map. Again, the values
inside indicate the number of features in input and output. The output of the last upsampling layer is then passed to a Logit layer, which will provide the
final prediction.

MONAI framework [34]. Our input-output model can be
mathematically summarized as follows:

fθ : R2×H×W×D → RH×W×D (2)

where H, W and D represent height, width, and depth.
For the training phase, various configurations were tested

using the AdamW optimizer [35] with different learning rates,
batch sizes, and weight decay settings as shown in Table I. In
the last row, the square brackets indicate the maximum and
minimum learning rate values used with the decay scheduler.
The loss function utilized is the following:

L = max
i=1,...,N

(ŷi − yi)
2 (3)

Where N corresponds to the batch size, ŷi represents the
model’s prediction, and yi denotes the GT. Three different
methods of batch loss calculation were also considered: mean,
max, and sum.

IV. RESULT

This section describes the results obtained from the pro-
posed approach. The first part showcases the quantitative
results, comparing the execution times with respect to SIENA
method, as well as the evaluation metrics used. The second part
is focused on the qualitative results displaying also a visual
comparison with the GT. We want to note that SIENA does
not support GPU usage; therefore, the SIENA values will be
reported without specifying the device (only CPU).

For our experiments, we used an NVIDIA A100 GPU and
an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz.

The best configuration of our approach (the fifth model in
Table I) achieves an average Mean Square Error (MSE) of
0.0008 and an average Structural Similarity Index Measure
(SSIM) of 0.88. From this point onward, when we refer to
our model, we mean this specific model.

Table II shows the computation time required by different
approaches. Given a pair of MRIs (MRIA, MRIB), the
processing time using our method averages 0.05 seconds with
a GPU and 2.98 seconds with a CPU. From the table, it is
evident that our solution is more efficient than SIENA, which
requires instead 840 seconds.

In Fig. 4, we present an example comparing our model’s
results to the ground truth (GT) obtained using SIENA. The
similarity between them indicates that our approach provides
good qualitative performance. Upon closer inspection, the GT
images (Fig. 4, first row) contain only some lighter or white
spots. This example gives us an indication of a close match
with SIENA and therefore the effectiveness of our solution. We

Learning Rate Batch Size Loss Reduction MSE SSIM

0.001 4 mean 0.001 0.83
0.001 4 sum 0.001 0.84
0.001 8 mean 0.003 0.71
0.01 4 max 0.0012 0.77
0.001 4 max 0.0008 0.88
[0.001, 0.01] 4 max 0.0014 0.83

TABLE I
THIS TABLE PRESENTS THE RESULTS OF THE MODELS TESTED WHILE

VARYING THE LEARNING RATE, BATCH SIZE, AND LOSS FUNCTION
REDUCTION, ALSO INCLUDING THE AVERAGE MSE AND SSIM VALUES

CALCULATED ON THE TEST SET.



Method Preprocessing time Processing time
Registration + skull rem.

Our Model CPU 190 s ± 3 s ∼2.98 s
Our Model GPU 190 s ± 3 s ∼0.05 s
SIENA 190 s ± 3 s ∼840 s

TABLE II
IN THIS TABLE, THE EXECUTION TIMES OF OUR BEST MODEL AND SIENA

ARE REPORTED, WITH EXECUTION USING CPU AND GPU. THE
EXECUTION TIMES ARE EXPRESSED IN SECONDS.

Fig. 4. The first row of these images shows the model’s results, while the
second row presents the GT results, which are the outputs from SIENA.

can conclude that, by leveraging deep learning, we developed
a model that can compute the brain atrophy map in a very
short time from two MRI scans. The main disadvantage of
SIENA lies in its inability to utilize the GPU for inference,
leading to significantly longer execution times. Notably, even
with the use of only a CPU, our method is more than 300
times faster.

As further evidence for the quantitative assessment of
our model, we compared the PBVC between SIENA (target
PBVC) and our approach. Our results show a Pearson’s
correlation coefficient of 0.92, indicating a relatively high
correlation, with a standard deviation of 1.49. The graph in
Fig. 5 visually represents these results.

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this study, we propose a novel deep-learning model based
on a 3D U-Net capable of generating atrophy flow maps. These
flow maps are useful for describing atrophy and assessing
the progression of neurological diseases. We compare our
method with SIENA, which is currently the most used method
in the neuroimaging community for flow maps and PBVC
estimation.

Our results demonstrate that we achieve outcomes compara-
ble to SIENA while significantly optimizing execution times.
Our model processes an MRI scan in approximately 3 minutes,
compared to the 17 minutes required by SIENA for each pair
of MRIs. Furthermore, our model shows strong similarity to
SIENA when analyzed using MSE and SSIM. Additionally,
the high Pearson’s correlation coefficient further validates our
model’s accuracy in assessing PBVC.

Given the promising results of the model, we plan to explore
its application in real-time clinical settings for monitoring
the progression of neurological diseases such as Alzheimer’s,
multiple sclerosis, and Parkinson’s disease. This approach
could also be integrated into large-scale studies to provide
quick and accurate assessments of brain atrophy across diverse
populations.
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Fig. 5. Pearson’s correlation between the PBVC values calculated by SIENA
and those obtained by replacing SIENA’s intermediate flow with that produced
by our model: the value r in brackets indicating the resulting coefficient.
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