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Abstract. Generating realistic images to accurately predict changes in
the structure of brain MRI can be a crucial tool for clinicians. Such
applications can help assess patients’ outcomes and analyze how dis-
eases progress at the individual level. However, existing methods devel-
oped for this task present some limitations. Some approaches attempt
to model the distribution of MRI scans directly by conditioning the
model on patients’ ages, but they fail to explicitly capture the rela-
tionship between structural changes in the brain and time intervals, es-
pecially on age-unbalanced datasets. Other approaches simply rely on
interpolation between scans, which limits their clinical application as
they do not predict future MRIs. To address these challenges, we pro-
pose a Temporally-Aware Diffusion Model (TADM), which introduces
a novel approach to accurately infer progression in brain MRIs. TADM
learns the distribution of structural changes in terms of intensity dif-
ferences between scans and combines the prediction of these changes
with the initial baseline scans to generate future MRIs. Furthermore,
during training, we propose to leverage a pre-trained Brain-Age Estima-
tor (BAE) to refine the model’s training process, enhancing its ability
to produce accurate MRIs that match the expected age gap between
baseline and generated scans. Our assessment, conducted on 634 sub-
jects from the OASIS-3 dataset, uses similarity metrics and region sizes
computed by comparing predicted and real follow-up scans on 3 rele-
vant brain regions. TADM achieves large improvements over existing
approaches, with an average decrease of 24% in region size error and an
improvement of 4% in similarity metrics. These evaluations demonstrate
the improvement of our model in mimicking temporal brain neurodegen-
erative progression compared to existing methods. We believe that our
approach will significantly benefit clinical applications, such as predicting
patient outcomes or improving treatments for patients. Our code is pub-
licly available at https://github.com/MattiaLitrico/TADM-Temporally-
Aware-Diffusion-Model-for-Neurodegenerative-Progression-on-Brain-MRI

Keywords: Spatial-temporal Disease Progression · Brain MRI · Diffu-
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1 Introduction

The capability to forecast structural changes in brain MRIs over time is critical
in medical imaging. The prediction of temporal brain trajectories has proven its
usefulness in several applications, such as recovering missing images in longi-
tudinal data, as a potential virtual placebo or for patient stratification [12–14,
20]; or for diagnosis and prognosis of Alzheimer’s disease [1]. While Alzheimer’s
disease (AD) diagnosis commonly relies on neuropsychological and behavioural
assessments, imaging data significantly aid in identifying characteristic disease
effects on the brain, even in its early stages [4]. Recent advancements in Artificial
Intelligence (AI) have driven the development of sophisticated spatial-temporal
disease progression models [11], empowering accurate prediction of brain struc-
tural progression. In particular, generative models have been proposed to sim-
ulate future MRI scans starting from past MRI scans used as inputs. One of
the AI solutions employed in this context involves the training of Generative
Adversarial Networks (GANs). For example, 4D-DANINet [14] utilizes adver-
sarial training alongside a series of biologically informed constraints to enhance
the generation process. Another approach proposed in [12] uses a conditional
3D GAN with morphology constraints to predict deformations, instead of di-
rectly manipulating image pixels. More recently, approaches based on Denoising
Diffusion Probabilistic Models (DDPMs) have demonstrated exceptional perfor-
mance in this domain. For instance, in [19], a diffusion model is combined with
a transformer network. The transformer generates a latent representation from
a sequence of input MRIs, which is used to condition the generation process
of the diffusion model. Another notable solution is Diffusion Deformable Model
(DDM) [8], which introduces a methodology to combine a diffusion and a de-
formation module to generate images that interpolate between two MRI scans.
Similarly, DiffuseMorph [7] trains a diffusion model to estimate a deformation
field between two scans. This deformation field facilitates the translation of one
input image into another, thereby enabling the generation of interpolated scans.

Due to the complexity of age-related changes in brain morphology during
disease progression [2], all these approaches often fail to accurately capture
the corresponding temporal evolution, facing the following limitations: (i) ap-
proaches that operate conditioning on patient’s age, such as [12, 14, 17, 18], do
not explicitly capture the relationship between structural changes in brain MRIs
and the time interval over which these changes occur; additionally, they require
age-balanced datasets, which are often lacking in real-world applications; (ii) ap-
proaches based on interpolation, including DDM [8] and DiffuseMorph [7], have
limitations in their capability to generate MRIs beyond the two input scans,
reducing their relevance in clinical applications that require predicting future
scans; and (iii) other approaches, like SADM [19], require longitudinal data at
inference time, limiting again their application in real-world contexts where a
series of scans for the patient are not available.

To address these issues, we propose TADM, a novel diffusion-based approach
for brain progression modelling which operates directly on T1-weighted MRIs.
Our model is trained to learn the distribution of brain changes within a specified
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time interval. To achieve this, we employ a three-fold strategy. Firstly, TADM
learns to predict the intensity difference between baseline and follow-up MRIs.
This avoids the need to generate entirely new scans, reduces the complexity of
the problem, and mitigates generation errors. Secondly, we condition the model
on the age gap between the input and output scans rather than directly on the
output age, aiming to better learn the relationship between observed differences
and the time interval. Given that the same age gap can arise between scans ac-
quired at different ages, conditioning on age gap avoids the necessity of including
samples from every age group in the training set. This is particularly beneficial
when the dataset has limited samples in some age groups. Lastly, we propose to
leverage a Brain-Age Estimator (BAE) to predict age differences between two
scans. During training, these predicted age gaps are used in the loss function of
our model, allowing the generation of images that accurately reflect the expected
age gaps between the inputs and the predictions.

We evaluate our method on the OASIS-3 dataset [9]. Specifically, we com-
pute similarity metrics and region size in three areas of the brain to estimate the
difference between real and predicted follow-up brain images. TADM improves
similarity metrics by 4% and obtains the best performance on estimating region
size reducing the error by 24%. Additionally, our qualitative analysis shows vi-
sual improvements in our approach in terms of better mimicking the temporal
progression of brains.

In conclusion, the contributions of this work are: (i) introducing TADM, a
diffusion-based approach for modelling brain progression trained on T1-weighted
MRIs; (ii) learning the distribution of intensity differences between MRI scans
to reduce the complexity of the generation process; (iii) conditioning on age gap
to better capture the relationship between brain changes and time intervals; and
(iv) proposing to leverage BAE to allow the generation of images that accurately
reflect the expected age gap.

2 Background

Denoising Diffusion Probabilistic Models (DDPMs) [3] are generative models
that learn a Markov chain process to convert a Gaussian distribution into data
distribution. During the diffusion process, Gaussian noise is added in successive
steps to a sample x0 from the given data distribution q(x0), to convert it into a
latent variable distribution q(xt), as follows:

q(x1, x2, . . . , xT |x0) =

T∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (2)

where t ∈ 1, . . . , T is the diffusion step, N represents the Gaussian distribution,
βt is a noise variance , and I is the identity matrix.
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Then, during the reverse process, the latent variable distribution pθ(xt) is
transformed progressively into the data distribution pθ(x0), which is parameter-
ized by θ, by training the model to learn the following Gaussian transformations:

pθ(x0, x1, . . . , xT−1|xT ) =

T∏
t=1

pθ(xt−1|xt) (3)

pθ(xt−1|xt) = N (xt−1;µ0(xt, t), σ0(xt, t)
2I) (4)

p(xt) = N (xT ;0, I) (5)

where µ0(xt, t) represents the mean of the Gaussian distribution, and σ0(xt, t)
2

denotes the variance, at the t reverse step.

3 Proposed Method

Here we provide the details of TADM. Our pipeline is depicted in Figure 1 and
consists of the following blocks: (a) a DDPM; (b) an Encoder; and (c) BAE.

During training, we use pairs of MRI scans denoted as ITa
and ITb

, obtained
from the same patient at two time points Ta and Tb. These scans are used to
compute a residual image I∆a,b

= ITb
− ITa

that we leverage to train the DDPM

aimed at predicting residuals Î∆a,b
. To generated the output scan ÎTb

at time

Tb we then add the predicted residual Î∆a,b
to the baseline scan ITa

at time Ta.
Additionally, to achieve patient individualization, the DDPM is conditioned with
a latent representation extracted by the encoder ϕ from ITa and other patient-
specific data (i.e. cognitive status and age). Finally, we leverage BAE to predict

the time interval ∆a,b = Tb − Ta between ITa
and the estimated ÎTb

to aid the
generation process of the DDPM. During inference, we use the scan ITa at time
Ta together with the desired time interval ∆a,b′ as an input to generate a future
unseen scan ITb′ at time Tb′ of the same patient.

3.1 Conditioning the Diffusion Model

We condition the DDPM to generate residual images using the following infor-
mation: (i) the image representation ϕ(ITa) extracted by the encoder ϕ on the
baseline; (ii) the time interval ∆a,b; (iii) other patient’s specific data.
Image Representation. To obtain individualization at the subject level, we
condition the model using a latent representation za of the baseline scan ITa

. In
particular, the latent representation is obtained leveraging a pretrained encoder
based on Residual-in-Residual Dense Blocks (RRDB) [16].
Time Interval (Age Gap). Conditioning the progression directly on age does
not explicitly capture the relationship between structural changes in brain MRIs
and the time interval over which these changes occur. Moreover, this strategy
necessitates age-balanced datasets, which are difficult to observe in real-world
scenarios. To tackle this limitation, we propose to condition the model using
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Fig. 1. TADM comprises three main parts (surrounded by coloured dashed boxes).
red: The DDPM takes a residual image, calculated as the difference between two
scans acquired at two the time points Ta and Tb, on which random noise ϵ is applied.
The DDPM is trained to denoise the residual image through several diffusion steps. The
denoised residual image Î∆a,b and the scan ITa are summed together to estimate the

scan ÎTb at time Tb. blue: Here, we encode the scan ITa to extract a representation za
used to condition the DDPM, in conjunction with other patient-specific data. green:
The estimated ÎTb is provided to the encoder to extract the features zb that, together
with the previously extracted features za, are provided as inputs to a BAE to predict
the time interval “∆a,b. The padlock indicates a model with frozen parameters.

the age gap between scans ∆a,b. Since the same age gap can occur between
scans acquired at different ages, conditioning on the age gap eliminates the
need for including samples from every age group in the training set. This is
particularly advantageous when the dataset has limited samples in certain age
groups. In our implementation, we encode ∆a,b using positional encoding [15]
before incorporating it into the model.

Patient-Specific Data. We also condition the model using the patient’s cogni-
tive status (D) and age at baseline (A). Indeed, age at baseline is crucial infor-
mation as diseases progress at different rates over the course of ageing. However,
by only using ∆a,b, our model would not capture such age-related progression
information. Note that this is different from previous work on age conditioning,
as they use age at the prediction rather than age at baseline.

3.2 Leveraging BAE to improve the temporal awareness

To encourage the model to generate images that accurately reflect the expected
age gap between the input and the prediction, we propose to leverage a BAE
model [6] to predict the age gap between two MRI scans. BAE is trained offline
on our training set and it is not further fine-tuned during the DDPM training.
Specifically, given the baseline ITa and the generated ÎTb

scans, the predicted

age gap is computed as “∆a,b = Ψ(Φ(ÎTb
)) − Ψ(Φ(ITa)), where Ψ is the BAE

model. This information will be used later to train the DDPM and improve
the generation. In particular, if the DDPM generates a scan ÎTb

that closely

approximates the ground truth ITb
, the predicted age gap “∆a,b should closely

match the actual age gap ∆a,b. Any error in the estimation of the age gap
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Table 1. Comparison study: Results showing the performance in terms of image-base
and region size in comparison to other methods.

Region Size Error (%) ↓

Method SSIM ↑ PSNR ↑ Gray Matter White Matter Cerebrospinal Fluid Total Brain

DiffuseMorph [7] 0.68 19.67 10.40 ± 3.45 3.49 ± 2.58 4.65 ± 2.80 46.30 ± 7.51

4D-DaniNet [14] 0.65 16.99 2.21 ± 1.08 2.57 ± 1.98 3.12 ± 3.65 9.31 ± 8.72

DDM [8] 0.69 19.59 2.44 ± 1.35 3.05 ± 2.74 4.37 ± 3.12 10.85 ± 11.64

TADM (Proposed) 0.72 20.51 1.69 ± 1.54 1.85 ± 2.20 2.70 ± 2.29 6.84 ± 5.00

will be corrected through backpropagation in the diffusion model to refine the
generation process.

3.3 Overall Framework

In this section, we will provide a complete overview of the framework.
Training. During the diffusion process, the DDPM is trained to predict the
noise ϵ added to the input I∆a,b

. This is obtained by minimising the following
objective:

LDML = Eϵ∼N (0,1),̄I∆a,b
,t

[
||Gθ (̄I∆a,b

, t; za, ∆a,b, A,D)− ϵ||22
]

(6)

where Gθ is the DDPM parametrized by θ and t is the diffusion timestep.
Additionally, as mentioned in Section 3.2, we incorporate the output from

BAE as an additional term in the loss function of the DDPM. Specifically, we
define the loss on the expected brain age gap as follows:

LBAE = (“∆a,b −∆a,b)
2. (7)

Note that the gradient of this loss updates only the DDPM parameters θ.
Finally, the overall loss is obtained by combining eqs. (6) and (7) as follows:

LTot = LDML + LBAE (8)

Inference. The model takes as input a baseline MRI ITa
and predicts a follow-up

MRI ITb′ with an arbitrarily time interval ∆a,b′ with respect to the baseline. The
reverse process starts from a Gaussian noise variable XT that is progressively
denoised through Gθ(Xt, t; za, ∆a,b′ , A,D). The predicted residual image Î∆a,b′

is then added to the baseline MRI to generate the predicted follow-up.

4 Experimental Results

Implementation Details. To evaluate our approach, we use 2,535 T1-weighted
(T1w) brain MRIs from 634 subjects from the OASIS-3 dataset [9]. Scans were
acquired over a period of 15 years and subjects are between 42 and 95 years old,
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Fig. 2. Comparison of the temporal progression on a 66-year-old subject with AD,
obtained by our approach against other state-of-the-art methods. We show predicted
slice-MRIs on the left and the corresponding error with the subject’s real brain MRI
on the right.

classified as cognitively normal, Mild Cognitive Impairment (MCI), and AD. We
apply linear registration through the MNI152 template and skull removal using
the FSL library [5] to all the MRIs. The dataset is divided into training set
(70%), validation set (10%) and test set (20%). We used the validation set to
optimize the hyperparameters of BAE.

Following [10], we adopt the U-Net as architecture of the diffusion model
Gθ and the same hyperparameters. Results of all baseline methods are obtained
using their publicly available codes.

Evaluation Metrics. We compute image-based metrics and region size in rel-
evant brain areas to assess the performance of our method. Specifically, for the
image-based metrics we use the Structural Similarity Index Measure (SSIM)
and Peak Signal-to-Noise Ratio (PSNR) between the generated and the actual
MRIs. On the other side, region sizes are used to evaluate the accuracy of dis-
ease progression. The regions considered in our experiment are: (i) Gray Matter,
(ii) White Matter, and (iii) Cerebrospinal Fluid (CSF). We use the FMRIB’s
Automated Segmentation Tool [5] to compute the area of the regions which are
expressed as percentages of the Total Brain to account for individual differences.
The error is calculated as the mean absolute error between the area on the region
from the predicted scan and ground truth MRIs.

Comparison Results. In Table 1, we present quantitative results obtained by
our method compared to other state-of-the-art approaches [7, 8, 14]. The results
demonstrate that we outperform the state-of-the-art in SSIM and PSNR by
+0.03 and +0.84, respectively. Results on the size of the region show that our
method achieves the lowest error in all the considered brain regions. In partic-



8 M. Litrico et al.

Table 2. Additional analysis: results showing the contribution of the different com-
ponents of TADM, including BAE, the use of patient’s specific data. Finally, we also
show the impact of using the conditioning on age rather than age gap as we proposed.

Region Size Error (%) ↓

Method SSIM ↑ PSNR ↑ Gray Matter White Matter Cerebrospinal Fluid Total Brain

TADM w/o patient’s data 0.71 20.32 1.78 ± 1.44 1.97 ± 2.14 2.72 ± 1.98 7.85 ± 5.17

TADM w/o BAE 0.69 20.08 2.44 ± 2.12 2.02 ± 2.13 3.85 ± 3.67 9.77 ± 8.23

TADM w/ age cond. 0.68 19.71 4.12 ± 3.48 4.98 ± 2.45 5.65 ± 3.32 11.95 ± 7.34

TADM 0.72 20.51 1.69 ± 1.54 1.85 ± 2.20 2.70 ± 2.29 6.84 ± 5.00

ular, we reduce the error on grey and white matter regions by approximately
30% and 8%, respectively. Regarding the CSF and Total Brain, the reduction of
error is nearly 29%, demonstrating that our model generates high-quality follow-
up scans compared to the current state-of-the-art. Additionally, in Figure 2, we
show one example of qualitative results in predicting MRI scans at different time
points. The figure shows that TADM offers a better approximation of the brain’s
temporal evolution compared to other methods. Specifically, our predictions de-
pict a notably accurate alignment of the ventricular expansion over time. Finally,
TADM exhibits fewer minor disparities in the brain cortex compared to other
methods.
Additional Analysis. In this section, we explore the impact of integrating
BAE into our pipeline and conditioning the model on patient’s patient-specific
data. Additionally, we evaluate the model’s performance when it is conditioned
on either the age or the age gap as proposed in our method. In the first row in
Table 2, we show the results of our method without incorporating the patient’s
specific data. This outcome highlights that the absence of patient-specific data
results in a minimal reduction in performance, indicating that the patient-specific
data contributes minimally to the pipeline. When BAE is not used in our pipeline
(second row in Table 2), we notice an evident decrease in performance. This
indicates that leveraging BAE is essential to support the generation process.
Lastly, in the third row, we observe that conditioning the model on age rather
than age gap drastically reduces performance by an average of approximately
60%, demonstrating the effectiveness of our idea of conditioning on age gaps.

5 Conclusion and Future Works

In this paper, we propose TADM, a novel approach designed to accurately
mimic brain neurodegenerative progression in MRIs. We evaluated TADM on
the OASIS-3 dataset, demonstrating superior performance compared to existing
approaches. TADM focuses on 2D scans, as we strive to develop a new data-
driven pipeline capable of improving the accuracy of current methods. Nonethe-
less, our method can be easily extended to 3D scans. Furthermore, our pipeline
presents exciting prospects for data augmentation of underrepresented samples
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in medical imaging datasets. This feature holds significant promise, especially in
the context of less common and more expensive modalities, e.g. PET and CT
scans, where the generation of synthetic samples remains a critical challenge.
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