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Abstract—Colonoscopy is currently the most effective screen-
ing method to find precancerous colon polyps and plan their
removal. Computer-aided polyp detection can reduce polyp miss
detection rates and help doctors find the most critical regions
to pay attention to. The challenge in detecting polyps is due
to the polyp’s morphology and size, and these fall into false-
negative. Indeed, polyps may exhibit high variability in shapes
(e.g., depressed, flat, pedunculated, etc...). Moreover, the water
injected from the endoscope results in artifacts which impede the
detection, and the lubricating mucus causes light artifacts due
its glossiness. To address this problem, we propose a mask-based
attention mechanism to ensure that the employed detector focuses
on particular regions of the image in order to reduce misdetection
rate. Our contribution takes advantage of information on polyp’s
position over time within a video sequence. We provide such
information through a binary mask which points out the last-
known polyp’s position. The proposed approach is validated on a
dataset that has been labeled by colonoscopy experts. It contains
about 200 videos and more than 500 different polyps with high
variability in size and textures. Experimental results show that
the proposed attention mechanism recover a smaller number of
false negatives and achieves an F1-score of 80.21%.

Index Terms—Polyp Detection, Mask, Attention

I. INTRODUCTION

In the last decades computer vision and machine learning
algorithms have been massively employed to design and de-
velop systems to support medical tasks. These systems include
tools and software for patients monitoring, as well as for
clinical and diagnostic purpose. Several studies have been
done in this context to support health professionals, such as
breast shape analysis for reconstructive surgery [1], [2], CT
image analysis for cysts detection [3], semantic segmentation
for intraoperative guidance [4], food image analysis for diet
monitoring [5], objective evaluation of acne severity [6].
However, multiple medical disorders can appear in the gas-
trointestinal tract, from simple nuisances to serious diseases

which may jeopardise human life. Among them, the Col-
orectal cancer (CRC) is the second most common cause of
cancer-related death for both sexes in many parts of the
world. Often, the antecedents of the CRC are polyps that
mutate and progress slowly, becoming invasive tumors that
metastasizes other parts of the body. Since the risk of cancer
development can be reduced by early detection, colonoscopy is
employed as primary method for screening and prevention of
CRC. However, during a colonoscopy, a significant fragment
of polyps can be missed [7], especially the ones located
in the proximal colon. Moreover, the screening process is
an operator-dependent task; hence, human factors, such as
fatigue, insufficient attentiveness during colon examination,
and lack of sensitivity to visual characteristics of polyps.
Missed polyps cause a survival rate of less than 10% [8].
This motivates the use of computer-aided polyp detection to
help colonoscopists to reduce false negatives [9]. In recent
years, automatic polyp detection systems using deep-learning
methods have been proposed [10], [11], [12] for detecting
colorectal polyps in real-time colonoscopy videos. Additional
investigations are significant in showing the generalizability
of deep-learning algorithms concerning the variations in scale,
location, and brightness of polyps.
Even though deep-learning methods generally achieved good
performances, they require a high number of training data to
successfully work. In this paper, we employ a dataset which
includes hundreds of thousands of labeled frames which comes
from real colonoscopy videos [13]. Our dataset presents a
high variability in polyps texture and morphology, as well
as in mucosa appearance. Even with deep-learning techniques
trained on a big dataset we notice that many polyps are hard to
detect. Indeed, using a standard detection approach, in which
we only observe the current frame, we get low Recall and high
Precision. The reason is precisely linked to the characteristics



Fig. 1. Attention Mechanism. The procedure for creating input images of
each video sequence by the combination of the original frame (left) and Mask
related to the previous frame (right).

of the polyps, which cause confusion in detection and fall into
false negatives. For example, flat polyps are confused with
the mucous membrane or more evident polyps are sometimes
confused with probe light or water. Our insight to improve
the detector capability is to introduce a sort of attention
mechanism which exploits the previous detection to suggest
our system to focus in a specific region. This mechanism is
based on the realistic assumption which adjacent frames of a
videos are similar, hence if a polyp is detected in a certain
frame, it could be found in the next one by searching around
the same position.
In a nutshell, we exploit temporal properties of video se-
quences to improve polyps detection. This requires the use of
colonoscopies video sequences obtained from real scenarios
and labeled by experts. Many works on polyp detection use
state-of-art datasets which are small and present low vari-
ability. Our contribution consists of an attention mechanism
realized with a binary mask which is fed to the detector
together with an RGB frame. The binary mask points out the
last-known polyp’s position in order to give a prior region
to easily re-identify a polyp we have already found in the
previous frame (Fig. 1).
Experiments, conducted using a modified version of YOLOv3
[14] to take into account the attention mask, prove the validity
of the proposed approach which shows better Recall when
the attention mechanism is used. It is important to note that
we conduct experiments on our dataset only, since state-of-
art ones do not include realistic video sequences, which are
required to successfully employ the proposed approach.
The remainder of this paper is organized as follows. Section
2 revises the related works. Section 3 shows the details
of the proposed method. Section 4 reports the experimental
settings, whereas Section 5 discusses the results. Conclusions
are summarized in Section 6.

II. RELATED WORK

A. Polyp Detection

Deep learning methods have been applied in this field
only in recent years. Previously, classic methods employing

swallow features or geometrical properties have been pro-
posed. Hwang et al. [15] proposed a technique in which the
polyp region detection is based on the elliptical shape. In
[16], texture features are employed for polyps and regular
tissue classification. A Support Vector Machine (SVM) is
applied as a classification tool in the polyps detection scheme.
The authors of [17] employed spatio-temporal features and
Conditional Random Field model (CRF). The CRF models the
temporal dependences in colonoscopy videos, while multiple
eigentissue images, at different angles, robustly model the
various tissue types. In addition, the system employs an
automatic quality assessment algorithm to preprocess videos
by removing low-quality frames. In [18] a method is proposed,
which collects a set of edge pixels and then refines this edge
map by patch descriptors and classification scheme, before the
polyp localization.
The most recent literature is dedicated to the topic of deep
learning for the automatic detection of polyps in colonoscopy
images. Zhang et al. [10] introduced a novel transfer learning
framework utilizing features learned from big nonmedical
datasets. This method exploited, in the first step, features
of non-polyp images to identify polyp images followed by
predicting the polyp histology. Yu et al. [11] designed a novel
offline and online three-dimensional deep learning integration
framework by leveraging the 3-D fully convolutional network
for automated detection of polyps from colonoscopy videos. In
[12] it is proposed a system that extracts color wavelet features
and convolutional neural network (CNN) features from each
sliding window of video frames. The fusion of all the features
is fed into SVM for the classification. Dijkstra et al. [19]
used a fully convolutional neural network model for semantic
segmentation and the transfer learning to produce detection
and localization.

B. Visual attention mechanism

There have been some promising works on the visual atten-
tion mechanism, but through the development of algorithms
applied to different fields from that addressed by us. Xu et al.
[20] introduced an attention-based model that automatically
learns to describe the content of images; it can show the
modality of training in a deterministic manner using standard
backpropagation techniques and by stochastically maximizing
a variational lower bound. The proposed attention model in
[21] not only outperforms average and max-pooling, but it is
useful to diagnostically visualize the importance of features at
different positions and scales. It introduced extra supervision
to the output of fully convolutional neural networks (FCNs) at
each scale, and the work proposes to jointly train the attention
model and the multi-scale networks. In [22] the authors
proposed a novel convolutional neural network called SCA-
CNN that incorporates Spatial and channel-wise attention in a
CNN. This model learns to pay attention to every feature entry
in the multi-layer 3D feature maps. Chu et al. [23] suggested
using a visual attention mechanism to automatically learn
and infer the contextual representations, driving the model
to focus on the region of interest. The approach is proposed



for human pose estimation by stacked hourglass networks to
generate attention maps from features at multiple resolutions
with various semantics. The conditional random field (CRF) is
utilized to model the correlations among neighboring regions
in the attention map.

C. Mask attention method

Attention mechanisms have been successfully applied in
several contexts. The first part of [24] is related to the
introduction of the binary segmentation masks to construct
synthetic RGB-Mask pairs as inputs to be used for a mask-
guided contrastive attention model (MGCAM) to learn features
separately for the person body and background regions. In
[25] it is proposed a network composed of two main modules,
namely a re-identification (Re-ID) module, and a recurrent
mask propagation (Re-MP) module. The Re-ID module helps
to build confident starting points in non-successive frames
and retrieve missing segments generated by occlusions. Based
on the segments provided by the Re-ID module, the Re-MP
module propagates their masks bidirectionally from a recurrent
neural network to the full video. Authors of [26] exposed both
the reference frame with annotation and the current frame with
previous mask estimation to a deep network. The network
detects the target object by matching the appearance at the ref-
erence frame and also tracks the previous mask by referencing
the previous target mask in the current frame. Differently by
previous works we exploit an attention mechanism for polyp
detection based on temporal redundancy. We train the object
detector using the current frame and a binary mask which
specifies the last known position of the lesion to push the
network focus on specific regions of the frame with the aim
of reducing false negative rate.

III. PROPOSED METHOD

The goal of our method is to perform polyp detection by
exploiting temporal redundancy to take advantage of detection
masks related to previous frames. Hence, we train an object
detector using the current frame together with the mask
relating to the position of the polyps in the previous frame
when this last information is available.
Therefore, our contribution focuses on modelling an object
detector which optimally uses information about previous
polyp’s position in a video sequence. It allows to build a sort
of lesion tracker which exploits the temporal properties of the
lesion during the whole screening process. In the next sections
we detail the proposed attention mechanism to train a network
which may exploit previous detection results through binary
masks. Then, we provide a short description of YOLOv3, the
CNN architecture used as detector to validate our method.

A. Attention Mechanism by Mask

Let be Fj the RGB j−th frame in a colonoscopy video and
let be M(F ) a function to assign a binary mask to the ground
truth bounding box of the frame F in which 1 indicates a pixel
inside a bounding box and 0 a pixel outside it. We propose to
train a detector by providing the input pair (Fj , M(Fj−1)) and

Input/Sample Training j

M(Fj-1)
Fj

AND

ത0
Fj

Output/Ground Truth

Bbox(Fj)

Bbox(Fj)

Fig. 2. Construction of the input for the training. Given a frame Fj , it is
combined with the binary mask M(Fj−1). The same Fj is also combined
with the mask 0̄ in order to train the network even when no polyps occurs
in the previous frame. The input data of the object detector is a four-channel
signal.

the bounding box annotation of the frame Fj (Fig. 2). We train
the network by including knowledge on the previous polyps’
position. Hence, the input is a H ×W × 4 tensor obtained by
merging an RGB image related to Fj and the mask M(Fj−1).
In this paper we employ YOLOv3 [14] as detector, and we
change the first layer in order to input a H ×W × 4 tensor in
place of a standard RGB image. However, as many frames do
not present polyps (negative frames), they drive masks where
each element in the mask is 0. For the sake of readability we
indicate such mask with the term 0̄.

To make the network robust, and able to deal even with
frame preceded by a negative one, we also train the network
with all the pairs (Fj , 0̄). Hence, frames which present polyps
in their previous one, are fed in the network twice, the first
time with the proper mask and the second time with 0̄ mask.

Finally, we assume that the first frame of a sequence is
always preceded by a negative frame.

B. The YOLOv3

In this work we choose YOLOv3 architecture as polyps
detector, which is the third version of YOLO [27]. It presents
better backbone classifier with respect to the first generation
and a higher average precision for small objects. The three
different scales for the object are obtained by downsampling
the size of the input image by 32, 16, and 8, respectively.
Also, YOLOv3 uses independent logistic classifiers for each
class instead of a regular softmax layer. This architecture has
53 convolutional layers and the first one input layer accepts a
416 × 416 image. Ground truth annotations for an image are
given in text form, by reporting a line for each object which
include the centre position (x, y) of the bounding box and its
size (i.e, width and height). The input image is expected to
be an RGB images, namely a 416× 416× 3 tensor. However,
we change the input layer to make YOLOv3 able to accept
416× 416× 4 tensor, in which the new channel includes the
binary attention mask.



Fig. 3. Example of our video sequence.

Fig. 4. Variability of the polyps and mucosa in the dataset.

IV. EXPERIMENTAL SETTINGS

In this section, we evaluate polyp detection performance to
prove the attention mechanism effectively decreases the num-
ber of false negatives. Note that in the considered application
context false negative have to be reduced in order to reduce
the risk for the patient under consideration in the colonoscopy
screening. The experiments are conducted on our dataset made
up entirely of real video sequences and labeled by colonoscopy
experts. For the performance evaluation, the dataset is split into
70% for the train set and 30% for the test set. We remark our
dataset includes over 100 videos and exhibits a high variability
in term of scale, illumination, polyp’s shape and texture. Some
frames do not present any lesion in order to train the model
under multiple scenarios.

A. Dataset

In our dataset [13], the same polyp occurs in a video
sequence for a large number of consecutive frames (Fig. 3).
Of course, sequences which do not present any lesions in a
subset of frames are present.
Our contribution is based on exploiting the information of
colonoscopy video sequences, which are nothing more than
temporal frames.
The dataset has been labeled by experts with ground truth
bounding boxes for each polyp. The dataset contains more
than 500 different polyps and about 200 videos, and allow us
to learn a detector which may exploit temporal information.
Among the sources of variability of the polyps in the dataset
are the type and occlusions (Fig. 4). The dataset has a high
variability in terms of size of polyps. Our idea is not applicable
with the datasets available in literature [28], [29], [30] as they
often have short sequences with a low frame-rate. On the other
hand, our detector is used to train on realistic sequences and
can take advantage of the temporal information.

B. Evaluation Metrics

Performances are evaluated by popular metrics: Precision
(Prec), Recall (Rec) and F1-score (F1) [31]. Specifically,

correctly identified polyps are considered True Positives (TP).
If no polyps are found on an image without a lesion, the result
is considered True Negative (TN). A False Positive (FP) occurs
when a polyp is incorrectly detected on a normal mucosa.
Finally, a False Negative detection (FN) occurs when a polyps
which appears in a frame is not detected.

C. Experiments

The experiments are carried out taking into account different
cases. We test our approach on 30% of the dataset, whereas
70% of frames are used for training. The split is performed
such that all frames of a video belong to only one of the two
(i.e., training and test set do not contain frames of the same
video). We consider the following tests:

• Baseline test: to evaluate the performance of the model
D trained with no attention mask. Hence, the model is
trained by input the RGB frame only, as in a standard
detector;

• Temporal test: to evaluate the performance achieved by
training the model DM which uses the attention mask.
Detection of the DM model are combined with the model
D for the final detection.

The baseline test is useful for comparing a standard detection
approach with respect to the proposed framework. The second
test highlights the benefits of the proposed approach, in which
detection result at frame j − 1 is given as input fot the
detection at frame j. For the final detection, we combine the
two different detectors, namely the the one trained with RGB
only (D) and the one trained with RGB and attention mask
(DM ). Fig. 5 shows a flowchart which describes how the
model D and DM are combined: the input frame Fj is fed in
the system for the inference, then we check the mask related to
the previous detection M̃(Fj−1). If no polyps are detected in
the previous frame, no attention mask is provided (M̃(Fj−1)
= 0̄) and the RGB frame Fj is fed in the standard detector D.
Otherwise, if the system detects a polyps in the previous frame
Fj−1, we concatenate the binary mask M̃(Fj−1) and the RGB
frame Fj and input them to the model DM . The process is
repeated over time along the overall video sequences. This test
is performed by using as attention mask the detection result
of previous steps. This means if the system results in a false
positive or a false negative, a tricky attention mask could be
input in the next step.

To check the performance with an oracle which know
always the polyp’s position at the previous step, we perform a
third test in which the inferred masks M̃ are replaced with the
ground truth mask M . This test gives us the best performance
which our strategy could achieve.

V. RESULTS

In this section we discuss experimental results achieved with
the proposed framework. In Table I we report a quantitative
evaluation in term of Precision (Prec), Recall (Rec) and F1-
score (F1). The comparison between the standard detector
(D) and the proposed one (DM + D), exhibits a Recall
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Fig. 5. Combination of the two detectors. The sample Fj is given to the system and the attention mask M̃(Fj−1) is checked. If it is available (M̃(Fj−1) =
0̄), Fj and the related mask are concatenated and input into the model DM . Else, if no attention mask is available, only the frame Fj is fed to the standard
model D.

TABLE I
EVALUATION COMPARISON

Detector Prec Rec F1

D 95.02 64.53 76.86
D + DM 95.54 69.16 80.21

D + DM with GT 93.60 87.67 90.53

improvement of 4.63%, which means we decrease false neg-
ative rate. In few words, the proposed attention mechanism,
which exploits temporal redundancy, reduces the misdetection
of polyps.
In addition, the proposed approach achieves a sligth improve-
ment even on Precision (+0.52%), which means it decreases
the false positive rate (normal mucosa incorrectly identified as
lesion). Of course, this led a raise of F1-score (+3.35%) as it
combines Recall and Precision.
Finally, we report results obtained in the ideal scenario in
which the attention mask is always correctly built. In this case
the system always know the polyp’s position in the previous
frame and uses it the perform the detection at the current
frame. With this oracle the Recall improvement is reasonably
higher (+23.14%). Despite experiments were conducted with
YOLOv3, it is possible to use any object detector together
with the proposed attention mechanism.

Different error analysis are carried out to verify the useful-

ness of our contribution and to understand which frames can be
recovered thanks the proposed strategy. The analysis focuses
on false negatives obtained from the experiments carried out
on our dataset with the base detector YOLOv3. Initially, video
sequences with the highest percentage of error are analyzed,
and then we pay attention on the false negatives. Specifically,
we focus on the misdetection of the model D and we found
that about 11% of false negative presented a true positive in the
previous frame. This means our method improves the Recall
by mainly operating on such false negative frames, which are
recovered by exploiting the attention mask which comes from
the polyps of the previous frame correctly detected.

VI. CONCLUSION

In this work, we propose a simple attention mechanism to be
integrated with an object detector to improve the performance
of polyp detection. The main idea is to exploit temporal
redundancy and improve the detection by using previously
detected polyps. Experimental results, conducted by using
YOLOv3 detector, confirm that the proposed approach we
obtain an improvement of 4.63% in Recall, by decreasing the
misdetection. This approach can be used in a real context in
real-time colonoscopies since the temporal redundancy of the
data is exploited.
Future works can be devoted on extending the current ap-
proach by learning attention mask explicitly for the considered
task.
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