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Abstract—Accurate segmentation of Multiple Sclerosis (MS)
lesions from Magnetic Resonance Imaging (MRI) scans is crucial
for clinical diagnosis and effective treatment planning. In this
work, we investigate the effectiveness of Diffusion Models (DM) in
achieving pixel-wise segmentation of MS lesions. DM significantly
improves segmentation sensitivity, especially in regions with sub-
tle abnormalities. We conducted extensive experiments using the
magnetic resonance volumes from a public dataset, encompassing
various imaging modalities. Our analysis demonstrated how DM
can achieve performance levels that are on par with state-of-
the-art techniques, as evidenced by a mean Dice coefficient
comparable to the best existing methods. Furthermore, some
variants of standard DM exhibits robustness across various
imaging modalities, showcasing its versatility in clinical settings.

Index Terms—Multiple Sclerosis, Denoising Diffusion Models,
Lesion segmentation, Medical image analysis

I. INTRODUCTION

Multiple Sclerosis (MS) is a complex and debilitating
chronic inflammatory demyelinating disease of the Central
Nervous System (CNS) [1]. It is characterized by focal
areas of inflammation accompanied by myelin and axonal
loss, leading to a wide array of neurological symptoms and
disabilities. Accurate detection and localization of MS le-
sions play a crucial role in clinical assessment and treatment
planning. These lesions, observable via Magnetic Resonance
Imaging (MRI), manifest in various regions of the brain
and spinal cord, and their spatial distribution is indicative
of the disease’s progression and severity [2]. Differentiating
lesions based on their specific locations, such as periventric-
ular, cortical/iuxtacortical, brain stem/cerebellar, and spinal
cord, holds importance in both diagnosis and monitoring

of disease progression and therapeutic efficacy [3]. Manual
annotation of MS lesions on MRI scans, while essential, is
a resource-intensive endeavor requiring specialized expertise.
Moreover, the inherent subjectivity introduces inter- and intra-
operator variability, potentially impacting the accuracy and
reproducibility of lesion segmentation [4]. This necessitates
the development of automated tools to mitigate human-induced
biases and ensure consistent and reliable clinical evaluations.
The longitudinal brain MRI protocol encompasses a spectrum
of sequences, each offering unique contrasts for delineating
brain tissues. Notably, Fluid Attenuated Inversion Recovery
(FLAIR), T1-weighted, T2-weighted, and PD-weighted im-
ages have become crucial in detecting MS lesions. Among
these, FLAIR images stand out, providing a distinct and high-
contrast view of lesions, enabling their clear demarcation from
surrounding tissues. (Refer to Fig. 1 for illustrative examples.)

(a) FLAIR (a) PD-w (a) T1-w (a) T2-w

Fig. 1. Examples of axial brain MRI images in different modality of
acquisition showing MS lesions: (a) FLAIR, (b) PD-weighted, (c) T1-weighted
and (d) T2-weighted.

In this research, we explore the utilization of Diffusion
Models (DM) in conjunction with various architectural en-

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

io
in

fo
rm

at
ic

s a
nd

 B
io

m
ed

ic
in

e 
(B

IB
M

) |
 9

79
-8

-3
50

3-
37

48
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

B
IB

M
58

86
1.

20
23

.1
03

85
33

4

Authorized licensed use limited to: University of Catania. Downloaded on March 07,2024 at 09:38:52 UTC from IEEE Xplore.  Restrictions apply. 



3734

hancements to achieve more accurate segmentation of Mul-
tiple Sclerosis (MS) lesions. Our study illustrates how DM,
when combined with these architectural variants, significantly
improves sensitivity, especially in regions containing subtle
abnormalities, thus elevating the overall accuracy of the seg-
mentation algorithm. Extensive experiments on the magnetic
resonance volumes from the ISBI2015 dataset [5] demonstrate
the good performance of our method, achieving an important
mean Dice Score (DSC) on the test set. Our tests leverages
the power of DM for robust 3D medical image segmentation.

DMs represent a novel frontier in Deep Learning method-
ologies, introducing a unique approach that involves injecting
controlled noise at the input and iteratively refining the seg-
mentation label map, enhancing prediction stability. Building
upon the architecture described in [18], the framework was
extended in order to create a more powerful and tailored solu-
tions. To harness the full capabilities of the DM, we conducted
extensive testing on various 3D medical image segmentation
algorithms based on them, incorporating modifications and
additional components. Those architectures are equipped to
handle medical imaging data effectively. In the best variant,
in order to extract meaningful information from the input
volume, a Denoising Attention U-Net Module and a standalone
Encoder Module were added, which work jointly to learn
and implement the denoising process. The output is a refined
segmentation label map, free from noise artifacts.

The efficacy of the architectures were evaluated on
ISBI2015 dataset, employing a leave-one-subject-out-cross-
validation scheme in patients with lesions in both baseline and
follow-up scans. Among the various models analyzed in the
general results (Section IV-B), the architecture depicted in Fig.
3 (MS-SegDiff) emerged as the most promising, exhibiting
superior performance.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the current state-of-the-art
in medical image segmentation and highlights the use of
Transformer and Denoising Diffusion Models in this context,
while Section III delves into the employed dataset and details
the proposed architecture. Experimental results and ablation
studies are reported in Section IV, whereas Section V presents
the concluding remarks of the paper.

II. STATE OF THE ART

A. Medical image segmentation

In recent years, there has been a notable surge in the utiliza-
tion of deep learning techniques in medical image, spanning
tasks such as classification [6] and segmentation. In the state-
of-the-arts, there are various works dedicated to segmenting
images from modalities like MRI and Computed Tomography
(CT). These works vary in terms of the deep learning architec-
tures employed and the methodologies adopted. Recently, [7]
wrote a comprehensive review offering an insightful overview
of deep learning techniques applied in MRI-based research,
also identifying promising avenues for future development.
Also [8] wrote a review in which summarised scientific articles
that perform the detection and segmentation of MS lesions

TABLE I
CONFIGURATIONS USED TO PERFORM THE EXPERIMENT. A

LEAVE-ONE-SUBJECT-OUT-CROSS-VALIDATION STRATEGY WAS
IMPLEMENTED CONSIDERING 20 DIFFERENT FOLD, WITH 3 PATIENTS TO
TRAIN THE NETWORK, 1 USED AT VALIDATION SET AND 1 SCAN TO TEST

IT. NOTE THAT THE NUMBERS INDICATE THE PATIENT WITH ALL ITS
TIME-POINT SCANS

Fold Training Validation Test
Fold1 1, 2, 3 4 5
Fold2 1, 2, 4 3 5
Fold3 1, 3, 4 2 5
Fold4 2, 3, 4 1 5
Fold5 1, 2, 3 5 4
Fold6 1, 2, 5 3 4
Fold7 1, 3, 5 2 4
Fold8 2, 3, 5 1 4
Fold9 1, 2, 4 5 3

Fold10 1, 2, 5 4 3
Fold11 1, 4, 5 2 3
Fold12 2, 4, 5 1 3
Fold13 1, 3, 4 5 2
Fold14 1, 3, 5 4 2
Fold15 1, 4, 5 3 2
Fold16 3, 4, 5 1 2
Fold17 2, 3, 4 5 1
Fold18 2, 3, 5 4 1
Fold19 2, 4, 5 3 1
Fold20 3, 4, 5 2 1

TABLE II
TABLE DISPLAYING THE FIVE DATASET CONFIGURATIONS CHOSEN FOR

CONDUCTING ALL TESTS. A
LEAVE-ONE-SUBJECT-OUT-CROSS-VALIDATION APPROACH IS

CONSISTENTLY EMPLOYED, ENSURING THAT A DIFFERENT PATIENT IS
RETAINED FOR TESTING IN EACH FOLD DURING THE CONFIGURATION

SELECTION PROCESS.

Fold Training Validation Test
Fold1 1, 2, 3 4 5
Fold6 1, 2, 5 3 4

Fold11 1, 4, 5 2 3
Fold16 3, 4, 5 1 2
Fold17 2, 3, 4 5 1

through deep learning. Numerous studies have harnessed the
power of Convolutional Neural Networks (CNN) for precise
MS segmentation. For instance, [9] recently propose a patch-
wise CNN to extract brain lesion from MRI; authors in
[19] introduce a CNN employing a dual-path architecture.
This model incorporates an attention-driven interaction block,
facilitating the exchange of information between two distinct
time points. In [34] [35], authors employ a neural network-
based automated approach to accurately identify MS lesions
in 3D brain MRI scans.

B. U-Net-based Architecture

Across medical images, conventional volumetric segmen-
tation algorithms are often relied on a U-shaped architecture,
integrating encoder-decoder frameworks with skip connections
that enable the decoder to reconstruct features derived from the
encoder. The majority of segmentation algorithms for volumet-
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ric medical images have adopted these structure, achieving
promising results in this field. Furthermore, the integration
of attention mechanism has been shown that significantly
improves the performance of basic architecture. Specifically,
authors in [10] introduces a U-Net variant that incorporates
global attention to perform segmentation; Additionally, in [11]
a Fully Convolutional Densely Network is presented, featuring
attention blocks that enable lesion segmentation applied to
2D images. In a recent study [20] conducted a segmentation
on FLAIR and T2 MRI images, exploiting two different U-
Net-based network architectures. In these recent studies, [20]
[21] the authors perform MRI image segmentation with U-
Net-based architectures integrating attention gate and channel
attention techniques.

C. Transformer-based Architecture

Recent advancements in the field of deep learning have
witnessed the emergence of the transformer architecture [12],
originally designed for natural language processing tasks but
also adapted for images with Visual Transformer (ViT) [13].
For instance, studies have successfully applied transformer-
based models for medical image segmentation. [14] employ
a 3D CNN that model local and global feature for 3D
multimodal brain tumor segmentation; In [15] authors propose
BiTr-UNet, that consist of an attention module that refine UNet
feature also with two ViT layers to segment tumors in BraTS
2021 [16]. Authors in [17] present SwinUNETR, a novel
architecture designed for the segmentation of brain tumours.
This approach frames the task as a sequence-to-sequence pre-
diction problem, with an encoder acting as a multi-resolution
feature extractor connected to an FCNN decoder, which finally
generates the segmentation output.

D. Denoising Diffusion Model-based Architecture

The integration of Diffusion Models in medical image seg-
mentation represents a cutting-edge advancement in the field.
These models, initially designed for generative tasks, have
found substantial success in enhancing segmentation accuracy
and precision, including in medical imaging. For instance,
MedSegDiff [22] has demonstrated notable proficiency in 2D
medical image segmentation by incorporating a segmentation
Denoising UNet and inter-structural information via Fourier
transform. Additionally, the same authors have proposed an
advanced version, MedSegDiff-V2 [23], a transformer-based
conditional UNet framework a transformer-based conditional
UNet framework that exploits conditioning techniques to
improve segmentation, leads a significantly enhancing the
performance of MedSegDiff. Additionally, [24] have leveraged
Diffusion Models to refine 2D medical image segmentation
results, emphasizing the importance of fusing outputs from
each diffusion step for improved robustness. Furthermore, [25]
propose BerDiff, a model that uses Bernoulli noise to produce
a series of segmentation masks, which can help highlight re-
gions of interest in order to improve binary segmentation tasks.
Inspired by the recent success of Denoising Diffusion Model,
we designed a segmentation model for MS segmentation. To

the best of our knowledge, this is the first work which use
DM for MS lesions segmentation.

(a) FLAIR (a) Rater 1 (a) Rater 2

Fig. 2. Examples of FLAIR image with the corresponding masks annotated
by Rater 1 (a) and Rater 2 (b), respectively. To note that, different Raters have
different decision about pixel location in the mask.

III. METHODOLOGY

Diffusion Models are a class of generative models designed
to understand and simulate a diffusion process for generating
data that closely resembles the original data distribution. This
process comprises two stages: the forward process and the
reverse process. During the forward process, the model starts
by introducing incremental noise, typically Gaussian noise, to
the initial image. This is done incrementally, step by step, until
the input image is gradually transformed into a progressively
noisier representation. In the reverse process, inverse transfor-
mations are applied to recover the original input image. In
this way, DM are able to generate new images that have a
similarity to the original data distribution. Diffusion Models
have gained prominence among deep learning architectures
due to their stability during training, especially when compared
to other generative architecture, considering the fact that DM
adhere to likelihood-based training, ensuring a more robust
and stable training process that effectively mitigates the risks
associated with mode collapse. Additionally, DM exhibit a
heightened resilience to overfitting. This resilience is important
to be sure that the model generalizes the results to unseen
data. The intrinsic qualities of DM make them particularly
suitable for a wide range of tasks in the field of deep learning.
These tasks include, but are not limited to, image generation,
data completion, denoising, and image segmentation, among
others. We conducted an analysis of the application of DM
for the segmentation of MS lesions in brain MRI images.
First, this choice is driven by the remarkable ability of DM
to capture the underlying complexity of data distributions,
resulting in high-quality images characterized by fine details
and realistic textures. Second, it is worth emphasizing that our
work represents the first attempt to employ DM for the specific
segmentation of multiple sclerosis lesions.

A. Dataset and preprocessing

In order to assess the effectiveness of our proposed method
in segmenting MS lesions, we employed the publicly ac-
cessible ISBI 2015 Longitudinal MS Lesion Segmentation
Challenge dataset [5]. The dataset consists of 19 MRI scans
from patients acquired over multiple time points using a 3.0 T
MR scanner. However, only five patients have corresponding
segmentation masks, each created by two expert human raters.
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Fig. 3. Schematic representation of the MS-SegDiff architecture. This model takes as input the multimodal MRI volume and its noisy mask and returns the
expected clean segmentation mask as output.

It’s worth noting that there are discrepancies between these
masks, highlighting the challenge even for MS experts, as
shown in Fig. 2. Four patients underwent 4 time points, while
one patient underwent 5 time points. The different acquisi-
tions were performed one year apart. Each scan contains the
original MRI, the MRI itself after a preliminary preprocessing
step (this include co-registration, brain extraction and non-
uniformity correction) and the masks annotated by two differ-
ent raters. In addition, there are several MRI modalities: T1-
weighted, T2-weighted, PD-weighted and FLAIR. Each scans
have the size of 181×217×181. In many of the methods men-
tioned in the state of the art, the ISBI2015 dataset is used for
MS lesion segmentation [11] [20] [21] [34] [35]. In this work,
only the preprocessed FLAIR, T1-weighted and T2-weighted
images were used for train and test the architectures. In order
to evaluate the stability of the model, the experiments were
conducted using only masks annotated by the Rater 1. The
experiments were conducted using the 20 configurations used
in [34] [35] and listed in Table I: in particular a subset of them
(listed in Table II) have been used to compare the variants of
the model while in the best variant all the configurations have
been trained and tested. In the preprocessing phase, MONAI
[29] transformations were implemented, including foreground
cropping, padding to 96 × 96 × 96, and normalization of
input intensity. Additionally, data augmentation techniques
were exploited, encompassing random clipping, flips, scaling
and random intensity adjustments.

B. Architecture

The objective of this work was the evaluation of per-
formances related to the application of DM to MS lesion
segmentation in MRI data. The denoising architecture, takes
multimodal MRI data and the corresponding ground truth as
input and adding random noise learns to gradually remove it
with the aim of generating clear segmentation maps. Fig. 3
provides an overview of MS-SegDiff (the best DM variants
tested) for MS lesion segmentation. The architecture started
from [18] employing a BasicUNet [31] as a backbone, a
widely adopted architecture for image segmentation. To en-
hance its performance to detect MS lesions some attention

mechanisms were integrated. The forward process in this
pipeline starts with the introduction of ’t’ steps of noise to
the ground-truth masks. Following the approach outlined in
[18], the input volume containing various modalities is fed
through a first Encoder Module (EM) to extract the embedding
representing the discriminative features. These features are
subsequently combined channel-wise, with the noisy labels
in the downsampling path of the Denoising Attention U-Net
Module (DAUNet). This network perform the reverse process
and produce the clear segmentation mask. A demonstrated im-
provement of the architecture is the addiction of Squeeze-and-
Attention blocks [32] after each module of the U-Net. These
components has been customised to work with 3D images. It
introduce a pixel-group attention mechanism through a convo-
lutional attention channel. This upgrading allows the network
to selectively focus on the most relevant groups of pixels while
ignoring extraneous information. This essential component is
strategically positioned after each down block (DB), ensuring
a comprehensive treatment of the input data. The multi-scale
features output from each Squeeze-and-Attention block serve
as input for the next down block. It is worth noting that both
encoders keep the same number of features and the same size
to allow for feature merging. Finally, the upsampling path
is symmetical to the downsampling, featuring Squeeze and
attention blocks after each upsampling block (UB).

Notably, the evaluation process generate different segmen-
tation mask at each step of the network through the Denoising
Diffusion Implicit Model (DDIM) approach [27]. Leveraging
the insight that with an increasing number of testing steps,
the prediction becomes progressively more accurate and the
prediction uncertainty decreases, we merge the segmenta-
tion masks obtained from each iteration. We used the Step-
Uncertainty based Fusion (SUF) module proposed in [18]. This
module merge the segmentation masks obtained from each
iteration, ensuring more stable segmentation results during
testing.

C. Evaluation metrics

The model evaluation was done comparing the predicted
segmentation masks with the provided ground-truth. As evalu-
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TABLE III
THIS TABLE PRESENTS THE RESULTS OBTAINED FROM THE STUDIES PERFORMED CONSIDERING DIFFERENT MODEL CONFIGURATIONS, EVALUATED ON

FIVE FOLDS.

Fold Baseline MS-SegDiff Baseline-Encoder Baseline-Encoder+attention
DSC TPR PPV DSC TPR PPV DSC TPR PPV DSC TPR PPV

Fold1 0.7128 0.7789 0.6598 0.7200 0.7621 0.6891 0.7312 0.7552 0.7123 0.7099 0.7630 0.6674
Fold6 0.7123 0.8283 0.6304 0.7671 0.7908 0.7490 0.7510 0.8005 0.7089 0.7528 0.8306 0.6923
Fold11 0.6420 0.9411 0.4884 0.7498 0.8716 0.6590 0.6549 0.9379 0.5047 0.6997 0.8608 0.5914
Fold16 0.7606 0.6481 0.9216 0.8337 0.7603 0.9231 0.7159 0.5707 0.9614 0.7195 0.5777 0.9544
Fold17 0.7468 0.6896 0.8298 0.7233 0.6431 0.8479 0.7226 0.6816 0.7870 0.7475 0.6891 0.8299
Mean 0.7149 0.7772 0.7060 0.7588 0.7656 0.7736 0.7151 0.7494 0.7349 0.7259 0.7442 0.7471

TABLE IV
THIS TABLE PRESENTS THE RESULTS OBTAINED FROM THE OPTIMAL MODEL CONFIGURATION, MS-SEGDIFF, EVALUATED ACROSS ALL 20 FOLDS.

Fold DSC TPR PPV
Best Final Best Final Best Final

Fold1 0.7200 0.7180 0.7621 0.7436 0.6891 0.6999
Fold2 0.7520 0.7495 0.7371 0.7798 0.7721 0.7265
Fold3 0.5854 0.7277 0.9155 0.6863 0.4312 0.7796
Fold4 0.7011 0.7132 0.7294 0.6964 0.6782 0.7331
Fold5 0.7875 0.7850 0.7608 0.7537 0.8193 0.8229
Fold6 0.7671 0.7809 0.7908 0.7729 0.7490 0.7936
Fold7 0.6575 0.7883 0.8560 0.7385 0.5352 0.8484
Fold8 0.7629 0.7800 0.7709 0.7484 0.7574 0.8183
Fold9 0.8045 0.8045 0.8156 0.8145 0.7950 0.7958

Fold10 0.8002 0.7992 0.8066 0.8355 0.7952 0.7665
Fold11 0.7498 0.8089 0.8716 0.8262 0.6590 0.7934
Fold12 0.7419 0.7750 0.8640 0.8200 0.6507 0.7365
Fold13 0.8191 0.8131 0.7121 0.7007 0.9640 0.9688
Fold14 0.8076 0.7668 0.6986 0.6353 0.9581 0.9699
Fold15 0.8162 0.7678 0.7142 0.6365 0.9530 0.9700
Fold16 0.8337 0.6080 0.7603 0.4422 0.9231 0.9760
Fold17 0.7233 0.6969 0.6431 0.5830 0.8479 0.8855
Fold18 0.7675 0.7243 0.7248 0.6435 0.8247 0.8506
Fold19 0.7770 0.7552 0.7393 0.6875 0.8251 0.8473
Fold20 0.4574 0.4885 0.5699 0.3338 0.3831 0.9130
Mean 0.7416 0.7425 0.7622 0.6939 0.7505 0.8348

ation metrics, we include the Dice Score [30], the True Positive
Rate (TPR) and the Positive Predictive Rate (PPV).

D. Implementation details

The proposed architecture has been implemented and tested
using Pytorch [28] and MONAI [29] frameworks. Training
was performed on a single NVIDIA A100 GPU. We employ
a batch size of 2 and Adam optimizer with a base learning
rate of 1e−4 and a weight decay of 1e−5. The learning rate
(LR) was dynamically adjusted using a Cosine Annealing LR
schedule [33]. Initially, the LR grows linearly, which was then
gradually reduced after an initial warmup period, following a
cosine function. All the network configuration was trained for
1200 iterations. In order to increase the number of training a
patch 96×96×96 have been chosen randomly in each epoch: in
this way every batch contains different parts of same patient.
Overlapping patches of 0.5 was also used during inference,
to give intrinsic data augmentation and reduce the amount of

memory required, while maintaining the detail of the original
input image.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup
To evaluate the performance of the proposed approach,

a leave-one-subject-out-cross-validation on annotated subject
was performed, following the scheme illustrated in Table
II. The table depicts the patient distribution across different
folds employed in cross-validation. Five distinct setups (Table
II) were selected from the 20 configurations in Table I to
guarantee that each validation and test set comprises a unique
patient. Within each fold, there are three patients in the training
set, one in the validation set, and one in the test set and the
numerical values represent the specific subject along with its
corresponding time-points. The choice of employing a leave-
one-subject-out-cross-validation is significant, as it ensures a
subject-wise subdivision of patients into training, validation,
and test sets. This methodology guarantees that the entire
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Fig. 4. Dice score produced after 1200 epoch of training by Fold11

patient, along with all their time-points, is included in each
set. Consequently, the network is never exposed to the patient
during training, nor to any of their previous time points. This
approach stands in contrast to some works in the state-of-the-
art ( [11] [20] [34]), where configurations are tested involving
the use of the entire patient for model training, reserving only
one time point for testing. This introduces a substantial risk of
overfitting due to the intrinsic knowledge of the tested patient.
To note that the model was trained with only three MRI
modalities, whereas many state-of-the-art architectures utilise
all available modalities. The model was evaluated using the
model coming from the ’best’ iteration obtained during each
training session, specifically referring to the iteration derived
from the epoch with the highest Dice score in validation.
To evaluate the performance of the overall results, we also
reported the results obtained with the final model (after 1200
epochs).

B. Results

To clarify the rationale behind the selected architecture,
a series of studies were conducted. The network structure
comprises a baseline backbone with subsequent modifications
and we will analyse the outcomes of its variants. Specifically,
tests involved the removal or addition of specific components
within the network to better understand their impact on both
individual modules and the overall performance of the model.
The aim is to quantitatively assess the impact of each com-
ponent on the overall model. The results of these studies are
shown in Table III and described below.

1) Baseline: Our analysis started with the baseline architec-
ture of [18], evaluating performance on the ISBI2015 dataset.
We trained the model using the five folds outlined in Table
II. These configurations were meticulously chosen to have
the most possible generalization in training occurrences. The
results of the chosen evaluation metrics obtained from the
five folds are shown as ’Baseline’ in Table III. Our baseline
model achieved a mean Dice score of 0.7149, demonstrating
competitive performance compared to state-of-the-art methods
that do not incorporate patient-specific information [34] [35].

2) Baseline with attention: Following this, marking a sig-
nificant improvement in this work, we integrated the custom-

designed squeeze and attention 3D blocks into both pathways
of the Attention U-Net. This augmentation significantly bol-
stered the architecture responsible for executing the reverse
process. We named this model ’MS-SegDiff’ and its archi-
tectural representation is depicted in Fig. 3. From the results
obtained in Table III (shown as ’MS-SegDiff’), it can be stated
that these additions significantly augment the segmentation
process of MS lesions, providing a notable enhancement in
performance compared to the baseline approach. In com-
parison to state-of-the-art methods, our approach achieved a
mean Dice score of 0.74 over the 20 configurations (0.7588
considering the five configurations in Table III). Furthermore,
it’s worth noting that with further refinements (some of which
are discussed in subsequent paragraphs), Diffusion Models
could potentially be the future of this task.

3) Impact of the encoder on network performance: Subse-
quently, we assessed the performance of the ’Baseline’ and
’MS-SegDiff’ models by excluding the encoder block and
retraining it on the five folds, retaining only the forward
and reverse processes. The results of this additional tests are
reported in Table III as ’Baseline-Encoder’ and ’Baseline-
Encoder+Attention’, respectively. Based on the conducted
study and the outcomes presented in the table, it is evident
that the encoder module only improves performance when
combined with the denoising UNet modified with attention
(DAUNeT). This test underline the importance of the encoder
and the embedding it produces. Its capability to extract dis-
criminative features from the whole volume is crucial for
effective segmentation. This further supports the notion that
the encoder module significantly contributes to the model’s
ability to discern and utilize relevant features for segmentation
tasks.

4) MS-SegDiff results: We opted to train the 20 con-
figurations described in Table I using the best-performing
model identified in the ablation tests. This approach pro-
vides a comprehensive perspective by considering all possible
combinations of patients across the various folds during the
training phase. Table IV shows the results obtained in the
20 configurations. We present the outcomes achieved with
both the optimal model selected during training, referred to as
the ’Best,’ and the final model obtained after the completion
of training, denoted as the ’Final’. The results also validate
the findings obtained in the 5 folds. It is notable that, in
several cases, the results of the ’Final’ model surpass those
of the ’Best’ model. This phenomenon is likely attributed to
the limited heterogeneity in the dataset employed. When the
validation set includes a patient clearly distinct from those
in the training set, while the test patient is more similar, the
’Final’ model tends to perform better.

This behavior is highlighted by the curves illustrating the
Dice score progression in both training and validation in Fig
4. While the training curve continues to ascend, the validation
curve reaches a peak, stabilizes, and even declines. This
insight sheds light on the challenges inherent in evaluating
methods with such a limited number of patients. Despite
the employment of transformations and data augmentation
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Fig. 5. Example of a segmentation mask obtained with our approach for fold: Fold13. The image shows: the original slice, the ground-truth mask, the
prediction mask, false-positive pixels and false-negative pixels.

TABLE V
RESULTS OBTAINED FROM THE STUDIES PERFORMED CONSIDERING

DIFFERENT CONFIGURATIONS OF S.

S 4 5 6
DSC 0.7391 0.7412 0.7416

techniques, these models, including state-of-the-art ones, tend
to exhibit overfitting to the patient data.

This observation further reinforces the efficacy of our pre-
vious approach, where we utilized all available patient scans
for training the network, reserving only one time-point for
testing. This strategy yielded superior results, highlighting the
importance of a comprehensive dataset in achieving robust
model performance.

The efficacy of the proposed approach can be observed in
the results presented in Fig. 5, specifically on a single slice
extracted from a patient within the Fold13 test set, which
achieved the best Dice score. Fig. 5 sequentially displays: the
slice itself, the corresponding ground truth mask, the predicted
mask, as well as the locations of false positive and false
negative pixels.

C. Ablation study

The authors in [18] introduced an uncertainty evaluation of
the predicted mask. It is based on a parameter S which repre-
sents the number of uncertainty steps conducted during the test
phase. The final segmentation output is obtained by combining
these steps with their corresponding uncertainties. We carried-
out test to evaluate the model at varying of S ∈ {4, 5, 6}: the
Dice scores corresponding to these combinations are reported
in Table V and demonstrate that the optimal configuration is
S = 6, therefore we selected this setup to train our ’MS-
SegDiff’ model. It is important to note that increasing the
value of S may improve segmentation accuracy, but it would
also require higher computational power.

We conducted an additional test to assess the effect of
patch size on segmentation reliability. Ad described before,
we evaluated performance using a patch size of 96x96x96,
selected randomly. However, we performed a subsequent test
using a smaller patch size of 64x64x64, so we trained the
baseline model using the five configurations outlined in Table
II to understand the impact of patch size (we used the baseline
architecture because MS-SegDiff architecture required signif-

TABLE VI
RESULTS OBTAINED FROM THE STUDIES PERFORMED CONSIDERING

DIFFERENT PATCH SIZES.

Patch-Size DSC TPR PPV
96x96x96 0.7149 0.7772 0.7060
64x64x64 0.7388 0.7063 0.8385

icantly more training time and consumes more computational
resources). As observed from the results obtained in Table
VI, the model with smaller patch sizes demonstrated a slight
improvement, indicating that opting for a smaller patch may
enhance classification accuracy. Given that a 64x64x64 patch
size appears to enhance performance, we will consider further
reducing the patch size, keeping in mind that the patch size
should ideally be larger than the lesion size for reliable
segmentation, and considering that lesions typically span more
than 30 pixels. However, it’s worth noting that a smaller patch
size resulted in a notable increase in training time. Due to time
constraints, we intend to carry out a comprehensive set of
future tests across all configurations to demonstrate the actual
performance improvement gained by selecting a smaller patch
size.

V. CONCLUSION REMARKS

In this study, we delved into the application of Diffusion
models for multiple sclerosis lesion segmentation, a task of ut-
most importance for clinical diagnosis and treatment planning.
Our findings shed light on the challenges associated with the
limited dataset size, which affected the performance of Dif-
fusion models. Nevertheless, the experiments we conducted,
including variations in parameters, such as S and patch size,
revealed promising avenues for potential improvement in this
approach. Looking ahead, our primary objective is to surpass
the current state-of-the-art results in lesion segmentation. This
will entail further refining the model architecture, exploring
additional data augmentation strategies, and investigating ad-
vanced training techniques aimed at enhancing the model’s
robustness and generalization capabilities.
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