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Abstract—Segmentation of multiple sclerosis lesions plays an
important role in understanding disease status. In this work,
we focus on the effectiveness of brain parcellation in enhancing
the performance of segmentation for multiple sclerosis lesions in
Magnetic Resonance Imaging. Brain parcellation does not im-
prove the segmentation performance, but make the results more
robust in terms of overall variability (e.g. standard deviation), by
dividing the brain into physically significant sub-regions that the
model can concentrate on. Our approach combines parcellation
with the existing diffusion-based model to increase sensitivity,
particularly in regions with small anomalies. We conducted a
thorough evaluation of a reference dataset on the field using all
available modalities. Our results show how the parcellation of the
brain when integrated into a diffusion-based pipeline, makes the
segmentation of MS more stable, lowering deviations from the
average, and improving some of the results w.r.t. state-of-the-
art. This method achieves good segmentation capabilities even
with small datasets, providing promising indications for further
research.

Index Terms—Multiple Sclerosis, Brain parcellation, Diffusion
Models, Medical image segmentation, MRI.

I. INTRODUCTION

Multiple Sclerosis (MS) is a chronic autoimmune disease
that primarily affects the Central Nervous System (CNS)
affecting the brain and spinal cord [1]. MS is characterized by
focal regions of inflammation together with myelin and axonal
degradation, causing a wide spectrum of neurological symp-
toms and impairments. For treatment and clinical assessments,
precise identification of MS lesions could play a crucial role.
MS lesions can be seen with Magnetic Resonance Imaging
(MRI) appearing in different parts of the brain and spinal cord;
moreover the location of them often reflects the severity of the
disease [2]. Differentiating lesions according to their specific
locations, such as periventricular, cortical/iuxtacortical, brain
stem/cerebellar, and spinal cord, is crucial for accurate diag-
nosis, tracking the course of the disease, and determining the
effectiveness of treatment [3]. Although necessary, manually
annotating MS lesions on MRI scans is a labor-intensive

(a) (b) (c) (d)

Fig. 1: Examples of axial brain MRI images in different
modality of acquisition showing MS lesions: FLAIR (a), PD-
w (b), T1-w (c) and T2-w (d).

process that calls for specific knowledge. Furthermore, the in-
trinsic subjectivity introduces heterogeneity within and across
operators, which may affect the repeatability and precision
of lesion segmentation [4]. In order to eliminate human-
induced biases and provide consistent and reliable clinical
evaluations, automated technologies must be developed. The
technique for longitudinal brain MRI includes a range of
sequences, each providing distinct contrasts for distinguishing
between different brain tissues. Specifically, T1-weighted (T1-
w), T2-weighted (T2-w), PD-weighted (PD-w) and with Fluid
Attenuated Inversion Recovery (FLAIR) images, have proven
indispensable in the identification of MS lesions. Of them,
FLAIR images are particularly notable because they offer a
sharp and contrasted view of the lesions, making it possible
to clearly distinguish them from the surrounding tissues (see
Fig. 1 for illustrative examples).

In this work, we investigate the application of a novel
technique that enhances MS lesion segmentation by utiliz-
ing brain parcellation [40]. With the term parcellation we
usually mean dividing an item into meaningful subregions
as opposed to dividing a picture into random segments [37]
[39]. Partitioning the brain into discrete areas according to
connectivity, structural, or functional based criteria is known
as parcellation in the context of brain imaging [40]. This
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Fig. 2: Schematic representation of proposed pipeline with parcellation step, use of MSSegDiff [36] for both hemispheres and
merging for final mask generation.

approach lessens the possibility of misunderstanding arising
from the brain’s complex structure by breaking the brain
down into smaller, physically appropriate components and
enables the model to concentrate on focused areas [38]. To
further improve segmentation performance, we combine the
parcellation with a Diffusion Model (DM) based architecture
called MSSegDiff proposed by [36] as depicted in Fig. 2. Our
analysis demonstrates how the parcellation combined with the
DM, greatly enhances sensitivity, particularly in areas with
mild irregularities, improving the segmentation algorithm’s
overall stability. Our technique performs well, as evidenced
by extensive trials on the ISBI2015 [5] dataset’s magnetic
resonance volumes, which yield a significant mean Dice Score
(DSC) on the test set. Therefore, international competitions
such as ICPR 2024 ( [49]) or ISBI, offer a benchmark to assess
progress in automated segmentation methods and encourage
the development of more robust techniques. The main goal
of this read, remains to build a model capable of detecting
lesions due to MS within the patient’s brain. The novelty
concerns the work of parcellation and thus the identification
and volumetric extraction of specific areas of the brain. The
optimization of the input through the parcellation optimise
feature extraction in the training phase, resulting in more stable
segmentation. Brain atlases are crucial tools in neuroimaging
that help in brain parcellation, functional mapping, and the
study of anatomical variability [45]. They provide consistent
identification of specific regions, which facilitates comparative
analysis of anatomical areas between subjects in clinical and
research contexts. Utilizing atlases can help with tasks like
matching pathological deviations from the norm, segmenting
anatomical components, and aligning individual brain scans to
a common area. Our experiments make use of DM’s capabili-

ties to provide reliable 3D medical image segmentation. With
their revolutionary strategy of infusing controlled noise at the
input and iteratively improving the segmentation label map
to improve prediction stability, DMs mark a new frontier in
Deep Learning methodology. The architecture outlined in [18]
was built upon, and the framework was expanded to produce
more potent and customized solutions [36]. Those designs are
prepared to handle medical imaging data effectively. The rest
of the paper is structured as follows. The employment of the
parcellation tool with different application areas in medical
picture segmentation is highlighted in Section II, which gives
an overview of the state-of-the-art; Section III explores the
dataset used, the employed approach, and the specifics of the
suggested architecture. Section IV reports on the experimental
findings and ablation experiments, whereas Section V contains
the paper’s closing thoughts.

II. STATE OF THE ART

A. Medical image segmentation

Recent advances in deep learning have facilitated its ap-
plication in medical imaging for neurological disorders like
Alzheimer’s, MS, and stroke. Brain scan analysis using multi-
modal data presents challenges, especially due to variability in
lesion shape, intensity, and imaging procedures. Deep learning
is increasingly used for classification [6] and segmentation
tasks, especially with CT and MRI data ( [50], [51]). A
comprehensive review [7] outlines deep learning methods for
MRI and suggests future directions, while another study [8]
summarizes MS lesion detection research. CNNs are fre-
quently employed for accurate MS segmentation ( [54]), with
some works incorporating dual-path designs [19] for patch-
wise lesion extraction [9]. Multiple sclerosis lesion segmen-
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Fig. 3: Examples of FLAIR image (a) with the corresponding
masks annotated by Rater 1 (b) and Rater 2 (c), respectively.
To note that, different Raters have different decision about
pixel location in the mask.

tation often uses FLAIR MRI, as noted in studies ( [52],
[53]), and attention mechanisms are introduced to enhance
temporal data interactions. Neural network methods for 3D
brain MRI lesion detection are explored in [34] and [35].
Additionally, [36] investigates DMs in medical segmentation,
providing a baseline with their MSSegDiff model (used in
our experiments). Brain parcellation, dividing the brain into
distinct anatomical and functional areas, enhances segmenta-
tion accuracy, crucial for diagnosis and treatment in conditions
like epilepsy, MS, and Alzheimer’s. Parcellation reduces inter-
subject variability and enhances anatomical fidelity, as seen
in Alzheimer’s research where atrophic regions like the hip-
pocampus and entorhinal cortex are isolated [48]. Parcellation-
based segmentation improves diagnostic accuracy, aids disease
progression tracking [46], and is advantageous for resting-state
fMRI [47]. This approach enables researchers to study intrinsic
connectivity patterns, aiding in the identification of biomarkers
for psychiatric, neurodevelopmental, and cognitive disorders.

III. METHODOLOGY

Brain parcellation divides the brain into regions with distinct
physical or functional characteristics, based on the understand-
ing that different brain areas have unique architectures and
roles. For instance, the division into left and right hemispheres
reflects functional and anatomical asymmetries:

• Functional specialization: The left hemisphere typically
supports language and analytical thinking, while the right
focuses on spatial awareness and creativity.

• Disorder asymmetry: Neurological conditions (e.g.,
stroke, epilepsy) often affect one hemisphere more sig-
nificantly.

Based on resting-state fMRI data, [38] introduced a widely
recognized parcellation of the cerebral cortex into 17 func-
tional networks, revealing brain segmentation into discrete
cognitive networks. Alternatively, the Human Connectome
Project’s multimodal approach [39] divides the cortex into
180 regions using functional, anatomical, and connectivity
data, supporting a specialized brain region approach over
a monolithic one. Research suggests MS may affect brain
hemispheres differently, with altered lateralization potentially
linked to cognitive changes. Studies reveal that MS-induced
lateralization shifts may impact processes like visual-spatial

TABLE I: Configurations employed in the study, based on
20 distinct folds. A leave-one-subject-out cross-validation was
used, with 3 patients for training, 1 for validation, and 1 for
testing. The patient numbers refer to all of their time-point
scans.

# Fold Training set Validation set Test set

1 [1, 2, 3] 4 5
2 [1, 2, 4] 3 5
3 [1, 3, 4] 2 5
4 [2, 3, 4] 1 5

5 [1, 2, 3] 5 4
6 [1, 2, 5] 3 4
7 [1, 3, 5] 2 4
8 [2, 3, 5] 1 4

9 [1, 2, 4] 5 3
10 [1, 2, 5] 4 3
11 [1, 4, 5] 2 3
12 [2, 4, 5] 1 3

13 [1, 3, 4] 5 2
14 [1, 3, 5] 4 2
15 [1, 4, 5] 3 2
16 [3, 4, 5] 1 2

17 [2, 3, 4] 5 1
18 [2, 3, 5] 4 1
19 [2, 4, 5] 3 1
20 [3, 4, 5] 2 1

memory, possibly due to changes in white matter microstruc-
ture [42]. Advanced imaging has shown asymmetric atrophy in
specific brain regions affected by MS, potentially influencing
hemispheric dominance and symptom manifestation [41]. This
highlights a need for further studies on MS’s lateralized ef-
fects, potentially aiding personalized rehabilitation approaches
[43]. Deep learning research supports network training based
on region-specific brain volumes. For example, DeepMedic
[44] demonstrated that multiscale input data improves segmen-
tation. Expanding on this, DM-based generative models learn
a diffusion process to produce refined, noise-free segmentation
maps. The architecture tested for parcellation, MSSegDiff
[36], incorporates a standalone Encoder and Denoising At-
tention U-Net for extracting key information from the input
volume.

A. Dataset

The ISBI2015 dataset [5] was used to evaluate the proposed
designs via leave-one-subject-out cross-validation on patients
with lesions in both baseline and follow-up scans. This dataset,
from the ISBI 2015 Longitudinal MS Lesion Segmentation
Challenge, includes 21 MRI scans from 5 patients acquired
with a 3.0 T scanner over multiple time points and labeled by
two expert raters. Figure 3 illustrates the variability between
rater masks, highlighting the difficulty of MS lesion segmen-
tation even for experts. One patient has five time points, while
the remaining four have four, with each scan taken a year apart.
Each scan includes raw and preprocessed MRI data (e.g., brain
extraction, co-registration, and non-uniformity correction) and
masks by both raters, with modalities T1-w, T2-w, PD-w,



and FLAIR, all measuring 181 × 217 × 181. The ISBI 2015
dataset is commonly used in MS lesion segmentation studies
( [11], [20], [21], [34], [35], [36]). In this study, we used
all available modalities for training and testing, utilizing only
Rater 1’s annotations to assess model stability. Table I details
the 20 fold combinations, as applied in prior works ( [34],
[35], [36]), ensuring consistent training and testing across all
configurations.

B. Parcellation

In order to parcel the brain into multiple regions by record-
ing on the patient at a given time point of an atlas, we
use the one proposed by Neuroparc2 [55]. Neuroparc is a
public registration algorithm available on GitHub, that gives
the opportunity to choose from several MNI-registered atlases3

for different volumes, while also providing the corresponding
csv file, containing the names of the anatomical regions of the
brain and the labels assigned to each. The atlas chosen among
the atlas proposed by the Neuroparc, for the next recording
phase is the HEMISPHERIC1, with the following partitioning
of brain areas:

• left hemisphere;
• right hemisphere;
• background.

The partition of the brain into physically or functionally
different areas is referred to as brain parcellation. The brain’s
divide into the right and left hemispheres, for instance, can
be a helpful strategy due to the functional and anatomical
asymmetries as suggested in numerous studies [38] [39]
by focusing on relevant features of a particular brain area.
Therefore, in accordance with what has been reported in the
scientific literature in the area of parcellation, an atlas, i.e., a
mapping of the various areas of the brain, was needed that
was recorded and then matched for each patient at a specific
time point. The Neuroparc pipeline is only one part of the
parcellation algorithm that we use. In fact, was decided to
divide the process of parcellation of each patient’s brain into
three basic steps:

1) Atlas Registration: on the patient’s scanned brain at a
specific time point. In this step, thanks to Neuroparc’s
pipeline we are able to create an atlas that fit the patient’s
MRI, avoiding sharp cuts and volume losses;

2) Atlases Creation: at this stage, from the atlas recorded
on the patient’s scan we derive the left hemisphere atlas
and the right hemisphere atlas;

3) Extracting Volumes: in this last part, having the atlas
of each hemisphere, we extract the volumes of each
available mri modalities (T1-w, T2-w, PD-w, FLAIR)
and mask (MASK by Rater 1).

2https://github.com/neurodata/neuroparc/blob/master/scripts/json
generation.py

3https://github.com/NeuroDataDesign/the-ents/blob/explore-atlases/atlases/
Results/brainAtlases color v2.png

1defined by Neuroparc: https://github.com/neurodata/neuroparc/blob/
master/scripts/json generation.py

Fig. 4: Visualization of the registered Atlas of an example
patient. The atlas is composed of left hemisphere colored
white, while right hemisphere colored gray.

The Neuroparc pipeline is designed to facilitate the processing
of MRI parcellation files by performing tasks such as resam-
pling, registration, and label generation, with a specific focus
on neuroimaging data. The pipeline it is capable of handling
brain images, applying transformations such as resampling
and registration, and generating corresponding output files
in standardized formats, as depicted in Fig. 4. The class
resamples a given brain image to a desired resolution and
registers it to a reference brain. This is achieved using affine
transformation methods, producing a resampled and registered
brain image. After registration, the processor assigns labels
to different regions of interest (ROIs) based on a pre-defined
labeling scheme or by analyzing the image itself. It rounds and
constrains image voxel values to map to valid labels. The Neu-
roparc pipeline computes the coordinates of centroids for each
identified brain region. These are extracted from the processed
brain image and are useful for further connectome analysis.
The processing pipeline culminates in the generation of labeled
brain image files and corresponding metadata files, providing
a comprehensive workflow for brain image parcellation and
analysis.

After the Atlas Registration phase, we find the Atlas Cre-
ation phase. This phase is designed to process a registered
and labeled brain atlas by separating its regions into distinct
hemispheric components. This function enables the generation
of individual brain atlases for both the left and right hemi-
spheres from a labeled brain image. It identifies the unique
regions present in the atlas, excluding background or null
values. These unique values represent different brain areas that
can be assigned to either the left or right hemisphere. Then the
function assigns regions corresponding to the left hemisphere
and right hemisphere into two separate arrays. The output
consists of two separate brain atlas files, each corresponding
to one of the hemispheres, facilitating independent analysis
or visualization of the hemispheric brain regions. The last
step in the process involves the extraction by macro areas of
the patient’s brain volume at a given time point. The volume
extraction is done not only by single time-point, but for each
of the 4 modalities (FLAIR, T1-w, T2-w, PD-w), and also for
the MASK annotated by Rater 1, how described in Fig. 5.

After the various steps of the process, we performed a
volume check on each patient for each modality. As a matter
of fact, the volume of the patient’s brain after compartmen-
talisation is on average 5.29% less than the original volume
(calculated on FLAIR, MPRAGE, T2 and PD), whereas, in
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Fig. 5: Visualization of the left(a) and right(b) hemisphere
volumes of an example patient after the extraction phase. In the
first column we have the lesion masks centered and zoomed
for both hemispheres, while for the other modalities, a red
boundig box is used to indicate the lesion area.

masks, we have negligible volume loss. This is due to the
composition of the atlas, which in fact, as already shown in the
Neuroparc preview, omits some anatomical parts. The dataset
after parcellation turns out to be divided into Train, Validation
and Test sets. Each of these three datasets in turn is subdivided
into: right hemisphere and left hemisphere. In each of these
divisions we have patient scans divided into time points and
modality, so for example a patient may have several time
points and for each of them include the 4 modalities (FLAIR,
PD-w, T1-w, T2-w) and the MASK. The split into train,
validation and was done according the leave-one-out-cross-
validation method described in the Table I. After an initial
training phase of two models, trained on complementary brain
regions obtained by the parcellation, and a subsequent phase
of merging the outputs generated by each model for a specific
patient, we have the final phase of comparison of the results
obtained in article [36] and ours. As explained in the preceding
lines, one network will be trained on the volume corresponding
to left hemisphere (Fig. 5a), the other complementary network
will be trained on the volumes representing right hemisphere
(Fig. 5b). Using this method, the model can be trained to
identify the unique features inherent in the two parcelled areas,
potentially improving segmentation accuracy. The objective
is to demonstrate that in terms of performance on the test
set is better for the region-specific networks than for the
model described in [36]. For a better visualization and a
fairer evaluation of ours method, the comparison is made by
merging for the same patient, the mask predicted by the Left
Hemisphere Network with the mask predicted by the Right
Hemisphere Network, using the weights that resulted in the
highest dice score on validation. In this way it is possible
to create a merged mask formed by the predicted mask on
the right-hand side and the predicted mask on the left-hand
side. Therefore, the metrics described below were calculated
with respect to the ground truth of the entire original volume.
In particular, the dice score, true positive rate and positive
predictive rate were a way to compare our results with those

Fig. 6: Example of a segmentation mask obtained with our
approach for Fold-15. The image shows: the original slice with
a bounding box (red) to indicate the lesion area, the ground-
truth mask and the predicted mask.

of the article [36], as illustrated in Fig. 6. This made it possible
to compare the results and see if there really is an improvement
in stability brought about by the parcellation.

C. Architecture

To evaluate Diffusion Models (DM) for MS lesion seg-
mentation in MRI data, the architecture in [36] was used.
The denoising process adds noise to multimodal MRI data
and progressively removes it to produce segmentation maps.
MSSegDiff, based on [18] and employing BasicUNet [31]
as its backbone, integrates attention mechanisms to improve
lesion detection. In the forward process, noise is incrementally
added to ground-truth masks over ”t” steps, while an Encoder
Module (EM) extracts discriminative features from the MRI
volume [18]. These features combine with noisy labels in
the downsampling path of the Denoising Attention U-Net
(DAUNet), followed by 3D Squeeze-and-Attention blocks [32]
to focus on important pixel clusters. Feature fusion is achieved
by maintaining consistent feature sizes in both encoders. The
Denoising Diffusion Implicit Model (DDIM) [27] generates
segmentation masks, with accuracy and certainty increasing
as steps progress. During testing, the StepUncertainty-based
Fusion (SUF) module [18] combines these masks for robust
segmentation results.

D. Evaluation metrics

The segmentation masks predicted for each hemisphere are
merged and compared to the original challenge masks for eval-
uation. For fair comparison with [36], the metrics used include:
Dice Score (DSC) [30], indicating overlap between predicted
and true masks; True Positive Rate (TPR), or recall, measuring
correctly identified positives; and Positive Predictive Value
(PPV), or precision, assessing the correctness of positive
predictions. Additional metrics are included for comprehensive
evaluation: False Positive Rate (FPR), the proportion of false
positives; Hausdorff Distance (HD), capturing the maximum
distance between the predicted and true surfaces; Lesion-wise
True Positive Rate (LTPR) and Lesion-wise False Positive Rate
(LFPR), representing the count of positive and negative labels
in the ground truth, respectively; Absolute Volume Difference
(AVD), quantifying volume discrepancy between prediction
and ground truth; and Average Symmetric Surface Distance
(ASSD), the mean symmetric distance between predicted and
actual surfaces.



TABLE II: Results obtained by the proposed method evaluated across all 20 folds.

Fold DSC↑ TPR↑ PPV↑ FPR↓ HD↑ LTPR↑ LFPR↓ AVD↓ ASSD↓

Fold1 0.7116 0.6938 0.735 1.75e−4 41.36 0.7392 0.2805 10.82 1.79
Fold2 0.7450 0.7807 0.7168 1.75e−4 22.22 0.7689 0.2598 12.41 0.83
Fold3 0.7258 0.7133 0.7405 1.75e−4 36.68 0.7693 0.2110 6.36 1.11
Fold4 0.7149 0.7815 0.6646 2.5e−4 36.48 0.7789 0.2257 17.00 1.33
Fold5 0.7444 0.7564 0.7353 1.0e−4 38.46 0.6099 0.3196 5.98 2.47
Fold6 0.6813 0.7850 0.6068 1.2e−4 31.83 0.6372 0.5606 22.39 3.68
Fold7 0.5975 0.8062 0.4764 2.5e−4 45.32 0.7605 0.6566 40.75 0.50
Fold8 0.7185 0.8135 0.6521 1.2e−4 31.52 0.6928 0.4223 19.81 2.90
Fold9 0.7535 0.7373 0.7709 1.8e−4 30.13 0.8136 0.2376 4.57 1.55

Fold10 0.7332 0.6516 0.8391 1.0e−4 47.12 0.7109 0.1582 28.97 2.49
Fold11 0.7010 0.7876 0.6325 3.4e−4 36.98 0.7417 0.3425 19.56 1.50
Fold12 0.7457 0.7296 0.7627 2.0e−4 29.08 0.7719 0.2674 4.55 1.28
Fold13 0.7872 0.6689 0.9580 1.25e−4 28.03 0.3021 0.0754 43.63 0.97
Fold14 0.7807 0.6595 0.9602 1.0e−4 23.15 0.3592 0.0410 46.61 0.87
Fold15 0.8739 0.8887 0.8600 6.5e−4 27.64 0.4659 0.1895 3.19 0.55
Fold16 0.7844 0.7391 0.8512 6.25e−4 31.22 0.3293 0.2458 13.27 1.03
Fold17 0.8469 0.8506 0.8450 3.5e−4 31.79 0.62 0.2187 5.50 0.65
Fold18 0.8506 0.8652 0.8381 3.75e−4 34.99 0.6154 0.2111 5.71 0.68
Fold19 0.7220 0.6640 0.8095 4.0e−4 33.23 0.54 0.3226 29.54 1.55
Fold20 0.6094 0.5272 0.7352 4.5e−4 39.70 0.5493 0.4730 41.21 2.88

Mean 0.7414 0.7450 0.7595 2.63e−4 33.84 0.6288 0.2859 19.09 1.53

TABLE III: Comparison between proposed method and
MSSegDiff [36] across 20 folds.

Ours MSSegDiff [36]

Fold DSC↑ TPR↑ PPV↑ DSC↑ TPR↑ PPV↑

Fold1 0.7116 0.6938 0.7350 0.7200 0.7621 0.6891
Fold2 0.7450 0.7807 0.7168 0.7520 0.7371 0.7721
Fold3 0.7258 0.7133 0.7405 0.5854 0.9155 0.4312
Fold4 0.7149 0.7815 0.6646 0.7011 0.7294 0.6782
Fold5 0.7444 0.7564 0.7353 0.7875 0.7608 0.8193
Fold6 0.6813 0.7850 0.6068 0.7671 0.7908 0.7490
Fold7 0.5975 0.8062 0.4764 0.6575 0.8560 0.5352
Fold8 0.7185 0.8135 0.6521 0.7629 0.7709 0.7574
Fold9 0.7535 0.7373 0.7709 0.8045 0.8156 0.7950
Fold10 0.7332 0.6516 0.8391 0.8002 0.8066 0.7952
Fold11 0.7010 0.7876 0.6325 0.7498 0.8716 0.6590
Fold12 0.7457 0.7296 0.7627 0.7419 0.8640 0.6507
Fold13 0.7872 0.6689 0.9580 0.8191 0.7121 0.9640
Fold14 0.7807 0.6595 0.9602 0.8076 0.6986 0.9581
Fold15 0.8739 0.8887 0.8600 0.8162 0.7142 0.9530
Fold16 0.7844 0.7391 0.8512 0.8337 0.7603 0.9231
Fold17 0.8469 0.8506 0.8450 0.7233 0.6431 0.8479
Fold18 0.8506 0.8652 0.8381 0.7675 0.7248 0.8247
Fold19 0.7220 0.6640 0.8095 0.7770 0.7393 0.8251
Fold20 0.6094 0.5272 0.7352 0.4574 0.5699 0.3831

Mean 0.7414 0.7450 0.7595 0.7416 0.7622 0.7505

E. Implementation details

During preprocessing, MONAI adjustments [29], such as
padding to 96×96×96 and input intensity normalization, were
applied. Data augmentation included random flips, scaling,
intensity changes, and clipping, as in [36], excluding crop fore-
ground transformation to allow subsequent mask merging. The
architecture was developed using PyTorch [28] and MONAI
[29] and trained on an NVIDIA A100 GPU. Training used
the Adam optimizer with a learning rate of 1× 10−4, weight
decay of 1× 10−5, and batch size of 2. A Cosine Annealing
schedule [33] was applied: after a warm-up, the learning rate

TABLE IV: Volumes and lesion’s number of each acquisition
Ground Truth mask denoted by the couple patient/timestep

Patient Timestep Volume (mm³) Number of Lesions

01 01 17456.0 30
01 02 14981.0 45
01 03 17826.0 22
01 04 16426.0 20

02 01 26892.0 46
02 02 31405.0 35
02 03 31494.0 36
02 04 32333.0 36

03 01 5990.0 27
03 02 5264.0 29
03 03 5281.0 32
03 04 5176.0 29
03 05 5335.0 25

04 01 2298.0 21
04 02 2196.0 25
04 03 1950.0 22
04 04 2281.0 19

05 01 4331.0 23
05 02 4957.0 26
05 03 4540.0 23
05 04 4383.0 20

increased linearly, then decreased with a cosine function, over
1200 cycles. For data augmentation, random 96 × 96 × 96
patches were sampled per epoch to ensure diverse batches
from the same patient. During inference, overlapping patches
of 0.6 were used to enhance data volume and reduce memory
requirements while maintaining detail.

IV. EXPERIMENT AND RESULTS

A leave-one-subject-out cross-validation (LOSO-CV) was
performed on annotated subjects as shown in Table I, where
three patients are used for training, one for validation, and one



for testing per fold. This approach ensures a subject-wise split,
preventing the network from seeing any test patient or their
previous time points during training. Unlike other methods
( [11], [20], [34]) that use entire patient data for training
and a single time point for testing—posing an overfitting
risk—this setup avoids patient-wise data leakage. All available
modalities were used, similar to state-of-the-art architectures.
The ”best” model iteration was selected based on the highest
Dice score in validation, with results also reported for the
final model (after 1200 epochs) to assess overall perfor-
mance. This LOSO-CV process was applied separately to
each hemisphere, and for a fair comparison, predictions from
the right and left hemispheres were merged and compared
with the ISBI challenge masks [5]. The table III presents
a comparison of the proposed method against the state-of-
the-art method (MSSegDiff [36]) in terms of segmentation
performance across 20 cross-validation folds. The evaluation
metrics include DSC, TPR, PPV, with arrows indicating the
direction of desired improvement. Overall, our method demon-
strates the same performance across all metrics. Specifically,
the average DSC of our approach is 0.7414, compared to
0.7416 for MSSegDiff; while this difference in DSC might
appear minimal, it is consistent across most folds, highlighting
the robustness of our approach in achieving stable results.
Furthermore, our method achieves a higher average PPV
(0.7595 vs. 0.7505), indicating a little improvement in terms of
precision. In fact, the proportion of positive predictions that are
correct is a little bit higher across different validation folds.
In addition to achieving higher average values, our method
exhibits lower standard deviations in DSC, TPR, and PPV
across folds, indicating greater robustness and consistency. The
reduced variability is particularly evident in challenging cases
such as folds 3, 17, and 20, where MSSegDiff shows larger
performance fluctuations. Lower standard deviation is critical
in medical image segmentation, as it implies that our method
performs reliably across diverse data subsets, reducing the risk
of underperformance in certain cases. Finally, it is important
to note the scenario in which the proposed method work better
w.r.t. [36]. Table IV describes number of lesions and volumes
of the Ground Truths where observing patient 01, although the
number of lesion is high the volume is low. It is known that the
described scenario (small sparse lesions) is very challenging,
which is the same on which our method reach better results.

V. CONCLUSIONS REMARKS

In this work, we demonstrated the efficacy of parcellation
within a segmentation task, and affirmed its effectiveness by
applying DM for the segmentation of MS lesions, a task of
primary importance for clinical diagnosis and therapy plan-
ning. Our results highlight the difficulties posed by the small
size of the dataset, which had an impact on the performance
of the diffusion models. However, our studies with different
choices of atlases have shown several encouraging directions
for further development of this method. We are confident that
the use of parcellation will be the main view to obtain better
results in lesion segmentation, and for this reason a deep

analysis of different parcellation atlases will be carried out,
with the objective to exceed the state-of-the-art results.
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