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Abstract

Semantic segmentation of Multiple Sclerosis (MS) lesions from longitudinal Mag-
netic Resonance Imaging (MRI) scans is crucial for the diagnosis and monitoring
of disease progression. This study aims to evaluate the generalization perfor-
mance of various deep learning segmentation models, which are commonly used
in state-of-the-art medical image segmentation, when integrated into a diffu-
sion model pipeline for segmenting MS lesions. Through an extensive set of
experiments, we assess the performance of diffusion models with different archi-
tectural configurations to identify the optimal model for MS lesion segmentation.
Additionally, we explored the robustness of diffusion model predictions by imple-
menting various inference strategies to combine the diffusion model outputs
obtained at each time step. Our results demonstrate the effectiveness of cer-
tain backbone architectures in enhancing diffusion model performance in MS
lesion segmentation. Moreover, we demonstrate that accurate selection of infer-
ence strategies can further enhance the accuracy and robustness of diffusion
model predictions. This study contributes to advancing the understanding of



diffusion models’ applicability in clinical settings and provides insights for improv-
ing MS lesion segmentation in MRI. Our source code is freely available at
https://github.com/alessiarondinella/MSSegDiff.

Keywords: Multiple Sclerosis, Denoising Diffusion Models, Lesion segmentation,
Medical image analysis

1 Introduction

Multiple Sclerosis (MS) is an inflammatory disorder affecting the Central Nervous
System (CNS). It is a chronic and debilitating demyelinating disease, characterized
by focal areas of inflammation and subsequent myelin and axonal loss [1]. MS leads
to a broad spectrum of neurological symptoms and disabilities. Typical symptoms of
MS include fatigue, difficulty walking, numbness or tingling, muscle weakness, spastic-
ity, vision problems, dizziness, bladder and bowel dysfunction, cognitive changes, and
emotional disturbances [2]. Due to the difficulty in diagnosing multiple sclerosis, it is
often identified and treated only after the disease has progressed to an advanced stage,
causing significant neurophysiological damage. At this point, it is no longer possible
to delay or halt the progression of the disease.

Diagnosing and analyzing MS in its early stages is quite challenging even for qual-
ified and experienced radiologists due to the highly complex nature of the brain.
Imaging plays a crucial role in the early diagnosis of MS, with Magnetic Resonance
Imaging (MRI) scans assisting doctors in the diagnostic process. The longitudinal
brain MRI protocol encompasses a variety of sequences, each providing unique con-
trasts for delineating brain tissues. Notably, Fluid Attenuated Inversion Recovery
(FLAIR), T1-weighted (T1-w), T2-weighted (T2-w), and PD-weighted (PD-w) images
are essential for detecting MS lesions. Among these, FLAIR images stand out, offering
a high-contrast view of lesions and allowing for their clear demarcation from surround-
ing tissues. MS lesions appear hyperintense on FLAIR images, which are more sensitive
than T2-w images in detecting juxtacortical and periventricular plaques. T1-w images,
on the other hand, offer insights into chronic areas of atrophy or ”black holes” [3],
while T2-w images highlight regions with increased water content, making them more
sensitive to infratentorial lesions. Acute lesions often appear with surrounding edema
on T2-w images. PD-w images, in turn, are especially effective at detecting cervical
spinal cord MS lesions, particularly when T2-w images fail to demonstrate them [4].
Accurately interpreting these results remains a complex and time-consuming task for
physicians. Therefore, there is a need for a fully automated tool for diagnosing multiple
sclerosis, particularly in its early stages. Indeed, accurate detection and localization
of MS lesions are critical for clinical evaluation and treatment planning.

This study aims to evaluate the generalization capability of different recent deep
learning segmentation models when integrated into MSSegDiff [5], a diffusion model
based pipeline for segmenting MS lesions. Specifically, we vary this architecture by
incorporating different main backbone commonly used in state-of-the-art medical
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image segmentation. Through an extensive set of experiments, we evaluate the per-
formance of diffusion models under different architectural configurations to determine
the best model for MS lesion segmentation. Additionally, we examine the robustness
of diffusion model predictions by implementing various inference strategies to combine
the diffusion model outputs obtained at each time step.

Our results demonstrate the effectiveness of certain backbone architectures in
enhancing diffusion model performance in MS lesion segmentation. Furthermore, we
show that accurate selection of inference strategies can further improve the accuracy
and robustness of diffusion model predictions.

The efficacy of the architectures was evaluated on the ISBI2015 dataset, employing
a cross-validation scheme in patients with lesions in both baseline and follow-up scans.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the current state-of-the-art, while Section 3 describes the main modules of the
architecture. Section 4 describes implementation details, metrics and configuration
setup, with information on the dataset and its preprocessing. Section 5 reports the
comparative study, and finally Section 6 concludes the paper.

2 Related Work

Recent advances in medical image segmentation, have leveraged a variety of deep
learning architectures to enhance accuracy and efficiency. In the last few years, sev-
eral notable approaches have emerged, each contributing to the field with unique
methodologies and improvements. One significant development is the application of
transformer-based models in medical imaging. The Vision Transformer (ViT), intro-
duced in [6] has been adapted for segmentation tasks with promising results. Following
this, the Swin Transformer, proposed in [7], has shown superior performance by utiliz-
ing hierarchical feature extraction with shifted windows, allowing for efficient global
context modeling. Following these works, numerous studies have proposed modify-
ing the backbone structures of medical image segmentation models by incorporating
transformers, such as SwinUNet [8], a hybrid model combining Swin Transformer and
U-Net that achieves robust performance in multi-organ segmentation task. Another
noteworthy approach is the use of convolutional neural networks (CNNs) with atten-
tion mechanisms [9]. Authors in [10] proposed an Attention U-Net, integrates spatial
attention gates to highlight relevant features, improving segmentation accuracy. This
model has inspired the development of various attention-based architectural adapta-
tions aiming to enhance segmentation performance, as done in [11] which propose a
Fully Convolutional DenseNet with attention blocks for MS lesion segmentation in
2D images and in [12] where authors propose an Attention u-Net for the same pur-
pose. Moreover, diffusion models have gained traction in the field of medical image
analysis. These models, originally introduced for generative tasks, have been adapted
for image segmentation by incorporating noise-injection and denoising processes to
improve robustness and accuracy of prediction results. Authors in [13], proposed a
segmentation model based on Diffusion Probabilistic Models (DDPM) [14] with a
dynamic conditional encoding, which aims to learn segmentation by conditioning with
the image prior. The same authors in [15] that integrate transformer into a diffusion
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Fig. 1 Overview of the MSSegDiff [5] architecture. The architecture consists of four key modules: (1)
the Forward Module, which implements the forward diffusion process by gradually adding Gaussian
noise to the ground-truth segmentation mask; (2) the Encoder Module, which captures discriminative
features from the channel-wise concatenated volumetric MRI sequences (’C’ in the figure represents
the channel-wise concatenation); (3) the Denoising Module, responsible for the reverse diffusion pro-
cess, progressively removing the noise to produce a clean segmentation mask; and (4) the Inference
Module, which combines predictions from each timestep to generate the final segmentation mask.

segmentation model with various conditional techniques over the denoising network
to perform multi-organ segmentation.

These advancements highlight the ongoing evolution of segmentation techniques,
with recent models focusing on integrating attention mechanisms, leveraging trans-
former architectures, and employing diffusion processes to achieve state-of-the-art
performance in medical image segmentation tasks.

3 Overview of the MSSegDiff Architecture

In this section, the general scheme of MSSegDiff will be presented. As depicted in
Figure 1 the overall pipeline comprises the following main modules: Forward Module,
Encoder Module, Denoising Module and Inference Module. The main modules added
to the architecture will be described below.

3.1 Forward Module

This module is responsible for implementing the forward diffusion process, which
involves introducing T steps of Gaussian noise to the input image z¢ (Figure 2). This
process gradually corrupts the original ground-truth zgpr, adding more noise until the
information from the original image is completely destroyed and becomes just noise.
To formalize this diffusion process, we consider it as a fixed Markov chain with T’
steps, where the image at time step ¢ maps to its subsequent state at timestep ¢ + 1.
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Fig. 2 This image depicts the forward module. The MS lesion segmentation mask is gradually
perturbed with Gaussian noise, for a number of timesteps 7', until it becomes completely noisy.

By modeling this as a Markov chain, it is possible to derive a formula to obtain the
corrupted image at any time step directly, without the need for iterative computation.
This streamlined approach greatly accelerates the diffusion process. Each step of the
forward diffusion process is defined as:

q(xe|xi—1) = N(xe; /1 — Beae—v, Bed) (1)

Here, g represents the forward process, x; is the output of the forward process at
step t, with x;_1 being the output at the previous step. N is the normal distribution
with mean /1 — 8;z;_1 and variance 3;1.

We set T' = 1000 for all experiments, based on the original DDPM paper [14],
where this value was selected for their experiments. Furthermore, the noise addition at
each step follows a predetermined pattern determined by a 8; scheduler, with values
ranging from [0,1]. In line with the approach proposed in [14], we adopted a linear
schedule for 3;, ranging from le—4 at timestep 0 to 0.02 at timestep T'. This schedule
ensures that the amount of noise added gradually increases over the course of the
diffusion process, as described in the DDPM paper.

3.2 Encoder Module

The primary objective of the Encoder Module (EM) of MSSegDiff (Figure 3) is to
extract an embedding that captures the discriminative features from the volumetric
MRI sequences used in this study (T1-w, T2-w, and FLAIR modalities), which are
concatenated along the channel dimension. The input to the EM is a volumetric image
I of size M x D x W x H, where M represents the number of MRI modalities, and
D, W, and H correspond to the depth, width, and height of the volumetric image,
respectively. By concatenating multiple MRI sequences in this manner and passing
them through a 3D encoder, the module aims to leverage complementary information
from the different imaging modalities to enhance the segmentation process. Each MRI
sequence provides unique insights regarding tissue characteristics and neurodegenera-
tive pathology. For instance, FLAIR sequences are sensitive to inflammation enabling
for increased sensitivity in detecting hyperintense lesion in the periventricular areas,
T1-w images offer anatomical details revealing any old areas of atrophy or black holes,
and T2-w images highlight areas of increased water content, particularly sensitive in
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Fig. 3 This image depicts the structure of the encoder module. It takes as input a concatenated
volumetric MRI and outputs a segmentation feature vector.

detecting infratentorial lesions. By combining these modalities, our feature extrac-
tion module aims to capture a comprehensive representation of the underlying tissue
properties, enhancing the discriminative power of the segmentation model. Moreover,
the use of volumetric images allows for the preservation of spatial information across
different slices, enabling the model to consider 3D structural context of MS lesions
during feature extraction. This is crucial in medical imaging tasks where lesion size
and distribution can vary significantly in different anatomical regions.

In general, the extraction of segmentation features from concatenated volumetric
MRI sequences enables our model to effectively capture both spatial and multimodal
information, leading to improved lesion segmentation performance and enhanced
clinical utility in the diagnosis and management of multiple sclerosis.

3.3 Denoising Module

The Denoising Module (DM), shown in Figure 4, aims to generate a ”clean” MS lesion
segmentation mask xy by reversing the diffusion process. The output x7, produced
in the Forward Module (Section 3.1), undergoes an iterative denoising procedure.
At each timestep, the DM predicts the amount of noise present in the input and
subtracts a portion of it according to a predefined schedule. Initially, only a small
fraction of the predicted noise is subtracted, but as the process continues, progressively
larger portions are removed. This iterative approach allows for a gradual refinement
of the segmentation, with each step producing a result that is increasingly accurate
and contains less noise. Unlike generative models such as GANs, which generate a
clean image in a single step, diffusion models reconstruct the input over multiple
timesteps, resulting in a segmentation mask that converges to the true segmentation
as the iterations proceed. This involves employing probabilities to make informed
estimations about the appearance of the data before noise introduction. This capability
is fundamental for the model to accurately reconstruct data, ensuring that the outputs
are not only devoid of noise but also closely resemble the original data.
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Fig. 4 This image shows the structure of the Denoising Module. It implements the reverse process
of the diffusion model in order to generate a clean segmentation mask.

3.4 Inference Module

At test time, the diffusion model iterates through 7' steps using the Denoising Diffu-
sion Implicit Models (DDIM) method [16]. The Inference Module (IM) at each step
generates an increasingly refined segmentation mask. Building on the understanding
that the accuracy of predictions improves and uncertainty decreases with an increas-
ing number of testing steps, the segmentation masks obtained from each iteration were
combined. Figure 8 represents an example of mask produced by the IM.

4 Overall Pipeline

In MSSegDiff, the noise has been introduced to the segmentation masks since they
represent what we aim to learn. The objective of this work is the evaluation of the
performance of the diffusion process applied to different backbone for multiple sclerosis
lesion segmentation in volumetric MRI data. MSSegDiff takes multimodal MRI and the
corresponding ground-truth as input and learns to gradually remove random noise with
the aim of generating clear segmentation maps of MS lesions. MSSegDiff implements
a U-Net backbone, an encoder-decoder architecture widely used for segmentation in
the medical domain. This network takes as input: the input volume I, consisting of
three MRI modalities, with dimensions M x D x W x H, and the noisy ground-truth
xr after undergoing the forward process (3.1), concatenated channel-wise.

As discussed, DM is conditioned by the segmentation feature extracted from the
raw MRI data. In fact, the input volume is passed through the Encoder Module
that extract the latent space representation, a projection of the input data in the
latent space, representing the most significant segmentation features. This features
helps to minimize the variability in the diffusion process, leading to more consistent
and accurate segmentation results. The Encoder Module has the same dimensions as
the encoder of the U-Net, allowing for the addition of conditional features extracted
from the input volume by the Encoder Module with the features extracted at each



step of the downsampling path of the U-Net, as they have the same dimension and
number. Once this is done, the upsampling path of the U-Net, identical and opposite
to the downsampling path, will reconstruct the original image, leveraging the skip
connection to recover high-level details lost during the downsampling process. It takes
these combined features as input and returns the clean segmentation mask x as
output.

4.1 Implementation details

MSSegDiff was implemented and tested using the PyTorch [17] and MONATI frame-
works [18]. Training was conducted on a single NVIDIA A100 GPU, using a batch size
of 2 and the AdamW optimizer with a base learning rate of le—4 and a weight decay
of le—3. To dynamically adjust the learning rate (LR), a Cosine Annealing LR sched-
ule [19] was employed. Initially, the LR linearly increased and was gradually reduced
following a cosine function after an initial warmup period. To diversify the training
data, a patch size of 96 x 96 x 96 was randomly selected in each epoch. This approach
ensured that every batch could contain different parts of the same patient, enhancing
the model’s ability to generalize. During inference, a sliding windows algorithm with
overlapping patches of 0.5 was employed. This strategy ensured that no detail was
missed while providing intrinsic data augmentation. Additionally, it helped reduce the
amount of memory required while maintaining the detail of the original input image.
This model is trained with a combination of Dice (DSC) Loss, Binary Cross Entropy
(BCE) Loss and Mean Squared Error (MSE) Loss, and thus the finally Loss of our
model is:

Loss(xg,xeT) = Losspsc + Lossper + Lossyse (2)

4.2 Evaluation metrics

The model evaluation process entailed a comparison between the predicted segmenta-
tion masks and the provided ground-truth data annotated by Rater 1.

The Dice Score (DSC) [20] served as a primary evaluation metric, quantifying the
spatial overlap between the predicted and ground-truth segmentation masks. This met-
ric measures the similarity between the two masks, with a higher Dice Score indicating
greater agreement between the predicted and true lesion regions.

In addition, the True Positive Rate (TPR) and the Positive Predictive Rate (PPV)
has been employed as complementary evaluation metrics. The TPR, also known as
sensitivity, measures the proportion of true positive predictions among all actual pos-
itive instances in the ground-truth data. It reflects the model’s ability to correctly
identify lesion regions. Conversely, the PPV, also referred to as precision, assesses the
accuracy of positive predictions made by the model. It represents the proportion of
true positive predictions among all positive predictions made by the model.

Furthermore, the evaluation incorporated Lesion False Positive Rate (LFPR) and
Lesion True Positive Rate (LTPR) to assess the model’s performance at a lesion-
level, where LFPR. quantifies the rate of false positive lesions and LTPR measures the



Table 1 Table displaying the five dataset folds chosen for all training. A
leave-one-subject-out-cross-validation approach is consistently employed,
ensuring that a different patient is retained for testing in each fold during the
configuration selection process.

Fold Training Validation Test
Fold1 1,2,3 4 5
Fold2 1,2,5 3 4
Fold3 1,4,5 2 3
Fold4 3,4,5 1 2
Fold5 2,3,4 5 1

rate of correctly identified lesions. These lesion-wise metrics provide a more detailed
evaluation of the model’s capacity to distinguish between lesion and non-lesion regions.
Additionally, the Absolute Volume Difference (AVD) and Average Symmetric Surface
Distance (ASSD) were used to assess the volumetric and surface differences between
the predicted and ground-truth masks. The AVD measures the absolute difference in
lesion volume between the predicted and ground-truth segmentations, while the ASSD
evaluates the average distance between corresponding surfaces of the predicted and
actual lesion masks. These metrics offer further insights into the accuracy and clinical
relevance of the segmentation results.

4.3 Configuration Setup

Table 1 details the distribution of patients across different folds used in the cross-
validation process. Specifically, all configurations were trained using a Leave-One-
Subject-Out-Cross-Validation (LOSO-CV). In LOSO-CV a patient is reserved for the
evaluation, an other for the test and the model is trained on remaining patients. This
ensures that each validation and test set includes an entire patient (a patient with all
of its time points) and also that the network did not have seen the test patient’s data
during training, nor any of its time points.

This method contrasts with some state-of-the-art approaches ([11] [12] [21]), where
configurations involve using the entire patient for model training, reserving only one
time point for testing. Such practices introduce a significant risk of overfitting due to
the model’s intrinsic knowledge of the tested patient.

5 distinct folds has been choosen, each with 3 patients in the training set, 1 patient
in the validation set and 1 in the test set. The numerical values in Table 1 represent
the specific patient along with all their corresponding time point. By changing the
patient used for the evaluation in each fold of the cross validation, LOSO-CV provided
a subject-wise estimate of the performance for new patients.

4.4 Dataset and preprocessing

The dataset employed is a subset of the ISBI 2015 challenge dataset, which was pub-
licly presented at the Longitudinal MS Lesion Segmentation Challenge [22], organized
in conjunction with the ISBI 2015 conference. While the full dataset comprises MRI
scans from 19 patients acquired at multiple time points on a 3.0 Tesla MR scanner,



(a) Mask made by Rater 1 (b) Mask made by Rater 2

Fig. 5 The image shows the same FLAIR slices of a patient belonging to the ISBI 2015 dataset,
labeled by two different experts, 5(a) Rater 1 and 5(b) Rater 2. It’s evident that the two generated
masks (overlaid and highlighted in yellow) are different in many pixels, highlighting the difficulty of
manually creating masks that reliably delineate MS lesions.

only 5 patients have corresponding segmentation masks. Each patient’s MRI scans
were annotated by two expert human raters, denominated Rater 1 and Rater 2, result-
ing in two different segmentation masks per patient. It’s noteworthy that there are
discrepancies between these masks, indicative of the complexities even for MS experts
in accurately delineating MS lesions. As illustrated in Figure 5, the differences in mask
annotations can be visually observed.

Among the 5 annotated patients in the dataset, four underwent longitudinal scans
at four time points, while one patient had scans at five time points, totaling 21
MRI acquisitions. The time interval between consecutive acquisition time points was
approximately one year. It’s important to consider the highly variable nature of mul-
tiple sclerosis progression; follow-up scans may not necessarily correspond to disease
progression, as lesions can appear at different times and in different brain regions.
Each acquisition includes original MR images, as well as images after rigid registration
to a Imm isotropic MNI template, brain extraction, and non-uniformity correction.
The MRI sequences consist of T1-w, T2-w, PD-w, and FLAIR images. To assess the
stability of the model, experiments using masks labeled by Rater 1 has been con-
ducted. Moreover, only FLAIR, T1-w and T2-w images, as MS lesion are more visible
in these sequences. Each sequence has the spatial dimension of 181 x 181 x 217. Figure 6
illustrates an example of a patient from the ISBI dataset.

In our preprocessing phase, we employed transformations available in MONAI,
encompassing foreground cropping, padding, and intensity normalization. These trans-
formation assist the training and validation phases of the model, considering that
pixels corresponding to lesions are often small compared to the entire image. Addi-
tionally, cropping and padding transformations help reduce the number of black pixels
in the image, as they constitute the majority compared to the white pixels identifying
lesions in the ground-truth mask. Intensity normalization is an essential preprocessing
step, particularly considering that MRIs may be acquired from different patients or the
same patient at different times using different scanners or parameters. This variability
can lead to significant intensity variations among MRI modalities, and normalization

10



(c) Axial, coronal and sagittal view of the central slice extracted of a FLAIR

Fig. 6 Central slice of a MRI scan in three different modalities: 6(a) T1-w, 6(b) T2-w, and 6(c)
FLAIR, showing axial, coronal, and sagittal views.

is therefore necessary to ensure greater consistency in pixel intensities, thereby facili-
tating model learning.In addition to the aforementioned preprocessing steps, we also
employed data augmentation, which was crucial given the limited number of training
samples available in our dataset. Data augmentation techniques were applied to arti-
ficially increase the diversity of the training data, helping to prevent overfitting and
improve the generalization capability of the model and important when dealing with
medical imaging datasets where the number of annotated samples may be limited.

11
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Fig. 7 Overview of the preprocessing step. The three volumes, corresponding to the three MRI
modalities T1-w, T2-w and FLAIR are concatenated channel-wise, after which transformations are
applied and data augmentation is performed.

We applied random cropping to 96 x 96 x 96, flips, scaling, and random intensity
adjustments. These adjustments can enhance the robustness of our model and improve
its performance on unseen data. Figure 7 shows the preprocessing step performed.

5 Comparative studies

We explore different configurations of the MSSegDiff architecture, depending on which
backbone architectures are used as the Encoder Module and Denoising Module. We
chose to use network architectures based on the U-Net model in all configurations due
to their proven capability to produce accurate segmentation maps, even with limited
input data. This is particularly important in medical imaging, where access to large
datasets is often restricted.

State-of-the-art medical image segmentation often incorporates custom modifica-
tions to basic architectures to enhance performance. Each configuration is trained for
1200 epochs. Following the completion of training, we employ the validation set to
select the model obtained at the epoch with the highest validation Dice Score. For our
studies we use the appropriately customized implementation of architectures available
in MONAI. All the trained configurations will be explained below.

5.1 Segmentation models

The experiments were carried out on ISBI2015 dataset using three representative and
recent network structure in medical image segmentation, namely BasicUNet [23], Seg-
ResNet [24] and SwinUNETR [25]. In the following, a briefly description of the network
architectures employed; all the implementations of these networks are available in
MONALI framework.

12



BasicUNet

The BasicUNet [23] is a convolutional network architecture designed for biomedical
image segmentation. It consists of a symmetric encoder-decoder structure with skip
connections that directly link corresponding layers in the encoder and decoder. The
encoder, or contracting path, captures context through successive convolutional and
downsampling layers, while the decoder, or expansive path, reconstructs the image
using upsampling operations. Skip connections ensure that spatial information lost
during downsampling is recovered, facilitating precise localization. This architecture
allows for effective segmentation with relatively small amounts of data, making it
suitable for medical imaging tasks.

SegResNet

SegResNet is an architecture specifically designed for medical image segmentation.
This architecture was originally proposed in [24] for brain tumor segmentation from
3D MRIs. It is based on an encoder-decoder CNN architecture, featuring a large
encoder to extract high-level image features and a small decoder to reconstruct the
segmentation mask. The encoder is based on Residual Network (ResNet) blocks [26],
while the decoder is similar to the encoder, except that it uses a unique block for each
spatial level. The original implementation in [24] employs a variational autoencoder
(VAE) [27] to reconstruct the original input image. In this work, we use the MONAI
implementation without the VAE part.

SwinUNETR

SwinUNETR [25] is an advanced network architecture that combines the strengths
of the Swin Transformer and UNETR [28] models, specifically designed for 3D brain
tumor semantic segmentation. The Swin Transformer is utilized as the encoder, lever-
aging hierarchical feature extraction with a shifted windows mechanism. This allows
for efficient and scalable computation of global self-attention across the image. This
architecture excels at capturing both local and global context, making it particularly
effective for complex segmentation tasks. The output of the encoder is connected to
a CNN-based architecture used as the decoder at different resolutions through skip
connections.

5.2 Performance of different configuration models

Table 2 shows the segmentation performances of the different configuration models
tested. We began our study by evaluating the performance of the BasicUNet architec-
ture. This first configuration follows the implementation proposed in [5], for this also
attention mechanisms have been added in this first test.

This configuration, named MSSegDiff in Table 2, we use the encoder part of
the BasicUNet as the EM to extract high-level features from the input volume I. As
for the DM, we adopted the whole BasicUNet architecture, enhanced with attention
mechanisms. The features extracted by the EM were then concatenated with the

13



Table 2 Results obtained from the comparative studies performed considering different model
configurations. The results report the average values of evaluation metrics among all folds.

Mean on 5 Fold

Model DSCt TPR{ PPVt LTPR{T LFPR| AVD| ASSD|
MSSegDiff 0,7526 0,7617 0,7700 0,6652  0,2782 0,2251  0,7699
MSSegDiff+EncoderSegResNet ~ 0,7167  0,7103  0,7656  0,6467  0,2698  0,2765  1,1371
MSSegDiff+SegResNet 0,7140  0,7485  0,7602  0,6237  0,2705  0,3800  1,1888
MSSegDiff+SwinUNETR 0,7093  0,7364  0,7345 0,6654  0,3261  0,3409  0,9624
MSSegDiff+MultiEncoder 0,7024  0,7598  0,6890  0,6244  0,3275  0,4096  1,2689

output features from each downsampling block in the denoising U-Net. Squeeze-and-
attention (SA) [29] layers were introduced after each block, in both upsampling and
downsampling paths, to refine feature selection and enhance the network’s capability to
focus on relevant information. We customized the layers proposed in the original paper
to work with 3D images. As demonstrated by the obtained results in Table 2, this first
configuration achieves high values, showcasing the potential of this attention-enhanced
network architecture when integrated into MSSegDiff.

The second configuration, named MSSegDiff+EncoderSegResNet, involves a
change in the encoder (EM). Specifically, we used the encoder section of SegResNet as
EM, while keeping the DM based on BasicUNet enhanced with SA layers, unchanged.
The goal was to assess the performance of SegResNet as an encoder for extracting
relevant features from volumetric MRI images, while leveraging the capability of Basi-
cUNet+SA to generate accurate segmentation masks through the denoising process.
The experimental results indicated that integrating SegResNet as the EM did not
lead to a significant improvement compared to the first configuration, which uses the
BasicUNet for both the Encoder and Denoising Modules. Specifically, the evaluation
metrics did not show substantial increases, suggesting that adopting SegResNet as the
encoder does not offer considerable advantages over the baseline BasicUNet, enhanced
with attention mechanisms.

Given these findings, we tested the configuration MSSegDiff+SegResNet, where
we employ SegResNet throughout the entire architecture, both in the EM and the
DM. The rationale behind this approach is to determine whether utilizing SegRes-
Net for the entire pipeline might enhance overall performance. This approach seeks to
maximize the utilization of SegResNet’s strengths in feature extraction and represen-
tation, which may not have been fully harnessed when it was employed solely as an
encoder. However, the outcomes from this configuration, which are practically identi-
cal to those of the second setup, indicate that our initial expectations were unfounded.
The results obtained highlight how the use of SegResNet did not confer advantages
over BasicUNet when integrated into a pipeline based on the diffusion model. This
finding underscores the importance of carefully considering the suitability of different
architectures within specific frameworks.

In the fourth configuration, named MSSegDiff+SwinUNETR, we thought of
evaluating the performance of SwinUNETR. This decision stems from transformer-
based model recent advancements in medical image segmentation tasks, particularly
with Vision Transformers (ViTs), due to the effectiveness of their self-attention in
capturing long-range dependencies while maintaining computational efficiency. Given

14



Fig. 8 Image shows 8(a) model outputs and 8(b) the prediction for xg through 7" = 10 steps.

(b) All prediction samples

the intricate nature of MS lesion segmentation from MRI scans, SwinUNETR’s abil-
ity to capture both local and global contextual information may prove beneficial.
Thus, exploring its performance within the MSSegDiff pipeline could provide valu-
able insights into its suitability for this task. However, from the results obtained, it
can be concluded that this configuration performed worse than all previous configura-
tions. One possible explanation for this outcome could be attributed to the inherent
limitations of utilizing transformers with limited data. Considering the superior per-
formance observed in the first configuration utilizing the BasicUNet architecture, we
decided to conduct a final experiment. The idea of this experiment is to improve our
approach by refining the EM. This refinement involved splitting the encoder, origi-
nally responsible for processing the concatenated MRI modalities into three distinct
encoders, each dedicated to a specific modality. Subsequently, we aggregated the out-
puts derived from the three encoders before integrating them with the output of
the encoder from the Denoising Module. Despite our efforts, this adjustment, termed
MSSegDiff+MultiEncoder, did not improve performance. In fact, it yielded the
lowest Dice score, as evident in Table 2.

5.3 Performance of different inference methods

At test time, the diffusion model iterates through 7T steps using the Denoising Diffusion
Implicit Models (DDIM) method [16]. Each step generates an increasingly refined
segmentation mask. As described in Section 3.4 DDIM is able to produce refined masks
over iterations, so we decided to use T' = 10 to test the generalization capabilities of
the model. Figure 8 shows an example of prediction masks obtained from each iteration
of DDIM with 7" = 10 step. Leveraging the insight that with an increasing number of
testing steps, the prediction becomes progressively more accurate and the prediction
uncertainty decreases, we decided to assess various inference methods. This methods
leverage the fusion of segmentation masks obtained from each iteration. Merging the
predictions generated at each iteration can ensure more robust segmentation results
compared to using only the final segmentation, as done in traditional generative tasks.

As the first method, we decided to calculate the mean of the segmentation masks
obtained at each step to generate the final segmentation mask. Additionally, we cal-
culated the variance of the output predictions. Figure 9(a) shows an example of the
mean mask obtained, while Figure 9(b) illustrates the variance. From the variance
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(a) Mean (b) Variance (c) Mean-Variance

Fig. 9 Example of segmentation masks obtained by 9(a) the mean of the masks obtained from each
iteration, 9(b) their variance, and 9(c) the difference between the mean and the variance.

image, it is noticeable that the pixels most challenging to predict are those delineating
the boundaries of MS lesions. As an additional inference method, we decided to com-
pute the difference between the mean and the variance. An example of the result is
shown in Figure 9(c). This stems from the insight that is particularly challenging for
our models to accurately predict the boundaries of the lesions. These boundaries are
already difficult to identify due to the small and complex structure of the lesions, mak-
ing precise segmentation a significant challenge for the network. To further enhance
the fusion process, we decided to use two additional methods. The first method, orig-
inally proposed in [30] and utilized in [5], introduces a Step-Uncertainty based Fusion
(SUF) module to fuse the segmentation masks based on the number of steps and the
prediction uncertainty. The uncertainty is estimated by performing multiple forward
passes through the diffusion model. Each step produces different outputs, generated
from different random noise, which are then used to calculate the uncertainty map. The
second method we tested is the Simultaneous Truth and Performance Level Estima-
tion (STAPLE) algorithm, proposed in [31], a widely used method in medical imaging
also employed in [13] [15]. STAPLE is a voting algorithm that creates a final segmen-
tation mask by performing pixel-by-pixel voting of all the segmentation masks. It has
been demonstrated that the accuracy of STAPLE improves with an increasing number
of segmentation masks considered for voting. In Table 3 we report the results of the
different inference methods in terms of the mean Dice score, evaluated over all folds
(best results are denoted as bold). From the results, it can be seen that the inference
methods Mean, Mean-var, and SUF achieve similar results, showing consistent per-
formance across different network configurations. In contrast, the STAPLE algorithm
exhibits poor performance across all network configurations. A possible reason for this
could be the low number of predictions used for the voting process. A higher number of
predictions might lead to better results. Additionally, it is evident that the MSSegDiff
configuration provides the highest Dice scores across all inference methods, confirm-
ing it as the best configuration. Specifically, the SUF inference method achieves the
highest Dice score in this configuration. However, the SUF method does not perform
better in all configurations, while Mean-var method achieves a Dice score of 0.7213, the
highest across all network configurations, slightly surpassing the SUF method. Given
the fact that the best network configuration MSSegDiff obtains the highest Dice scores
and achieves the best performance using SUF as the inference method, we decided to
use the SUF method and report the results in Table 2 using this inference method.
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Table 3 Results obtained from methods evaluated by mean Dice Score among all folds.

Mean DSC on 5 Fold

Model Mean Mean-var SUF STAPLE
MSSegDiff 0,7517 0,7495 0,7526 0,6690
MSSegDiff+EncoderSegResNet 0,7133 0,7246 0,7167 0,6381
MSSegDiff+SegResNet 0,7149 0,7169 0,7140 0,5655
MSSegDiff+SwinUNETR 0,7073 0,7108 0,7093 0,6246
MSSegDiff+MultiEncoder 0,7023 0,7049 0,7025 0,5511
Mean 0,7179 0,7213 0,7190 0,6097

6 Conclusion

In this study, we explored the efficacy of various deep learning architectures integrated
into a diffusion model pipeline for MS lesion segmentation from longitudinal MRI
scans. Through an extensive set of tests, we evaluated the performances of different net-
work configurations within the MSSegDiff framework. Our findings demonstrate that
while incorporating advanced architectures holds promise, the traditional U-Net-based
configuration consistently outperforms other models. The MSSegDiff configuration
leverages attention mechanisms to enhance segmentation accuracy, confirming its
robustness in MS lesion segmentation. Moreover, our exploration of different inference
methods revealed that the SUF approach consistently produces high-quality segmenta-
tion results, indicating its effectiveness in handling prediction uncertainty. Overall, our
study contributes to advancing the understanding of deep learning architectures in MS
lesion segmentation and the MSSegDiff framework provides valuable insights for future
research directions. Future work could focus on optimizing the MSSegDiff framework
to improve its computational efficiency, making it more suitable for real-time applica-
tions in clinical settings. Additionally, extending the approach to incorporate multi-site
and heterogeneous data would enhance the model’s robustness across various patient
populations and imaging devices, paving the way for broader clinical adoption.
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