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Abstract—Despite significant advancements in the field of
vision, language and robotics, integrating these capabilities to
create an autonomous robot assistant remains a challenge. This
paper presents ViLaBot (Vision and Language roBot), a system
designed to aid humans in daily activities while at home. ViLaBot
combines a language model with a library of basic visuomotor
skills to understand human needs, create action plans and
execute them. The system relies solely on onboard visual and
proprioceptive sensing, eliminating the need for pre-built maps or
precise object locations and facilitating real-world deployment in
a variety of environments. Experimental validation conducted in
11 realistic home environments featuring simulated human agents
using the Habitat simulator indicated that ViLaBot can achieve
promising results when using ground-truth image segmentation,
yet exhibits inferior performance in scenarios involving imperfect
visual perception. The results support the validity of the proposed
pipeline and highlight the critical components of the system
that should be improved to increase its overall success rate and
reliability.

Index Terms—human-robot interaction, assistive tasks, task
planning, navigation and manipulation.

I. INTRODUCTION

The aspiration to create robotic household assistants has
been a major driving force for researchers in the field of
robotics, shaping their work across various domains. This
pursuit involves advancements in visual perception, refining
manipulation techniques, and addressing increasingly complex
challenges. A proficient household assistant must be able to
interact seamlessly with humans through both visual and ver-
bal communication, possess a comprehensive understanding of
diverse objects, navigate its surroundings adeptly, and make
intelligent decisions in environments with limited sensory
input. An example of such a complex task is shown in Fig. 1.
This multifaceted objective has spurred research in areas such
as language understanding, navigation, and task and motion
planning. However, previous efforts have often considered
simplified scenarios, focusing on predetermined tasks, pre-
built detailed maps, and known precise object locations [1],
[2]. To cope with a more realistic setting, we present Vision
and Language roBot (ViLaBot), a novel approach designed

to connect human language with actions, behaviors, and ob-
jects in interactive home environments. Our approach enables
natural language instructions to be translated into sequences
of actions and interactions within realistic simulation envi-
ronments. ViLaBot relies only on onboard visual and pro-
prioceptive (joints and gripper state) sensing, removing the
need for pre-built maps or object locations and simplifying its
deployment in real-world scenarios. By simulating real-world
challenges encountered when translating human language into
robot actions for assistive tasks, we provide a comprehensive
evaluation assessing the effectiveness of robotic systems in
home environments.

We base our experiments on HomeRobot [3], a framework
for the development of robotic systems which leverages the
Habitat Synthetic Scenes Dataset (HSSD) [4], comprising 49
interactive 3D scenes created by humans within the Habitat
simulator [5]. To reproduce assistive scenarios, we expanded
the existing dataset by including 3D human agents engaged
in activities in different settings such as kitchens and TV
lounges. The results show that the proposed approach achieves
promising performance in aiding humans in complex home
environments. In summary, the contributions of our work are
as follows:

• We propose an assistive robotic system for real and
practical scenarios, that understands human needs starting
from natural language, elaborates an action plan and
executes it, without having a prior knowledge of the
environment’s layout or privileged information on the
location of objects. Our approach uses a language model
and a library of visuomotor skills to generate objectives
and accurately execute tasks as requested by the human.

• We propose a novel natural language dataset comprising
natural language queries paired with corresponding action
sequences for the robot to enact.

• We extended the HSSD [4] dataset to include 3D human
agents at various locations. These human agents are
aligned with different activities in areas such as the
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Fig. 1. The robot starts from point S and explores the home environment to locate and approach the human at a safe distance. Trajectory A illustrates its path
towards the human. Once the human is reached, a task is assigned to the robot using a natural language query. Subsequently, an action plan is generated using
a language model. Following the action plan, the robot explores the environment to locate the toy plane as shown by trajectory B. Once the toy is grabbed,
it returns to the human, depicted by trajectory C. The point E indicate the end of the episode. Images 1− 6 present the third-person view at the end of each
subtask.

kitchen, TV lounge, and other relevant areas that were
previously absent from the original dataset.

• We show that the considered approach exhibits promising
performance in navigating complex 3D environments and
assisting humans with various household tasks.

II. RELATED WORK

A. Task Planning

Task planning in robotics typically involves employing
search algorithms within a predefined domain [6], [7]. How-
ever, this approach faces scalability challenges in environments
with numerous feasible actions and objects due to large
branching factors [8], [9]. To mitigate this, heuristics are
commonly utilized to guide the search process [10]–[12].
Recent research has explored learning-based approaches to
task and motion planning, incorporating techniques such as
hierarchical learning, language-based planning spaces, repre-
sentation learning, and learning compositional skills [13]–[17]
In contrast, our method bypasses traditional search methods by
directly generating action plans through language model that
incorporate conditional reasoning.

B. Exploration

Agents navigating and manipulating the embodied world
must keep track of both the environment [18] and their position
[19]. These aspects have been extensively explored in robotics,
involving the processing of low-level information [20], the
construction of semantic maps [21], and more recently, the
development of techniques tailored to managing dynamic and
general aspects of the environment [22], [23]. In scenarios,
such as in embodied learning tasks, recent methods have
investigated neural network-based maps [24]–[26]. Our ap-
proach builds on these methods and incorporates the use of a
pre-trained semantic segmentation model, following a similar
methodological setup as [27], [28].

C. Rearrangement

The rearrangement task has been a long-standing focus
in robotics research, with numerous studies addressing this
fundamental task [29]–[31]. Typically, these approaches ad-
dress the challenge in the context of fully observing object
states [32], [33], enabling efficient and accurate planning-
based solutions. However, a recent trend has emerged in the
field of visual rearrangement [34]–[36], where the states of
the objects and the goal of the rearrangement are not directly
observable. In these cases, the agent receives direct visual
input and the environment is relatively complex and realistic.
These rearrangement approaches share similarities with other
challenging tasks of embedded AI, such as embedded naviga-
tion [37]–[40] and answers to embodied questions [41], [42],
which require finding objects and reasoning about their states.

D. Vision and Language Navigation

In vision and language navigation, one can use either a natu-
ral language or language template to describe a path leading to
a specific goal based on egocentric visual observations [43]–
[45]. Since the introduction of Room-to-Room (R2R) [44],
a dataset for visually-grounded natural language navigation
in real environments, researchers have achieved significant
advances in navigation performance [46], [47] with the incor-
poration of task variations with additional on-route instructions
[48], [49]. However, much of this progress has been limited
to static environments. In contrast, the tasks associated with
our approach encompass navigation, object interactions, and
state changes. While there are existing methods that rely on
simple block worlds and fully observable scenes [50], [51],
our approach presents more challenging tasks using visually
complex scenes. Unlike [52], which evaluates agents executing
house instructions using a generic interact action, our method
incorporates multiple navigation and manipulation actions like
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Fig. 2. (a) Types of query with an example. (b) Query examples along with the action plan generated by GPT3

find, pick, place and introduces variations in both language and
visual complexity. Furthermore, there are related works that
leverage language models for code-base task planning [53].

The natural language processing community has a sub-
stantial body of literature on following language-based in-
structions. In this context, research has mainly focused on
mapping instructions to actions [43], [54], [55]. However,
these efforts do not involve visual or interactive environments.
Our approach uses a language model along with a navigation
module to generate objectives and accurately execute tasks as
per the human’s request.

III. PROBLEM DEFINITION

We aim to create a system able to navigate complex
environments and assist humans in various tasks. The system
is evaluated following an episode-based approach, inspired by
previous works on navigation with Reinforcement Learning
(RL) [3]. At the beginning of each episode, the agent is
initialized at a random location within the environment and
receives two images as input: a depth image containing spa-
tial information about the environment; an image containing
semantic segmentation of objects that appear in the scene.
Additionally, the agent is provided with sensor pose readings
xt, representing the robot’s pose relative to its starting position,
and joint sensor readings yt indicating the states of the camera
and arm joints. The initial goal of the agent is to locate and
reach the human at a safe distance. Once the agent reaches
the human, a task is assigned by the human in the form of
a natural language query (e.g., “I need a bottle opener to
open this soda”). This query is then processed by a language
model to generate an action plan (see Fig. 2b). Subsequently,
the robot utilizes its visuomotor skills library to execute the
action plan and assist the human.

Throughout the episode, a visuomotor skill predicts an
action at at each time step t according to a given subtask. The
set of actions include move forward, turn right, turn left, and
stop. An episode concludes either when the agent executes the
entire action plan or when it reaches the maximum limit of
2050 steps. To evaluate the efficacy of ViLaBot, we present
the Success Rate (SR) for each skill independently, along with
the partial SR and the overall SR. The partial SR denotes the
average across all skills, while the overall SR signifies the
percentage of successfully executed action plans. We devised

four task variants to encompass diverse scenarios with varying
levels of complexity. The details of each version are given
following:

• V1.1 After reaching the person and receiving the natural
language query, the agent has to find the requested object
and move it to a specified location as requested by the
human. To execute the action plan, the robot is provided
with privileged information about the general location of
the goal object, such as the backpack being on a chair.
However, the specific chair is not disclosed, requiring the
robot to locate the right chair and proceed with the rest
of the action plan accordingly.

• V1.2 It is similar to V 1.1, but we removed the privileged
information about the goal object. This adds more com-
plexity to the task, especially in detecting smaller objects
from a distance.

• V2.1 Unlike V 1, the robot delivers the requested object
to the human rather than relocating it elsewhere. As in
V 1.1, the robot receives privileged information about the
general location of the goal object. It is important to
note that the human may not be in the same location as
observed at the start of the episode, requiring the robot
to locate the human again.

• V2.2 It shares similarities with V 2.1 but introduces more
complexity to the task by removing privileged informa-
tion regarding the goal object location.

IV. PROPOSED METHOD

The proposed approach relies on a language model and
library of visuomotor skills to efficiently navigate complex
indoor environments and support humans for various tasks, as
illustrated in Fig. 3. The details are as follows:

A. Language Model

The language module assists in processing the natural
language queries from a person to generate actionable plans.
We accommodate various query types, as illustrated in Fig. 2a.
Contrary to traditional search methods, our approach directly
generates action plans through a language model by integrating
conditional reasoning. We conceptualize task planning as a
tuple (O, A, R, E, Q) consisting of sets of objects O, executable
actions A, receptacles available in the environment R, example
queries with action plan E, and final query Q. For example,
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Fig. 3. Outline of the proposed approach. Given a natural language query, the language model generates an action plan. The robot then executes that action
plan using visuomotor skills.

consider the task bring me an apple. Our approach utilizes a
GPT3 model to interpret the query and generate an action plan
(see Fig. 2b) using a predefined set of actions the robot can
execute. This approach facilitates efficient and context-aware
task planning without relying on exhaustive search algorithms.

B. Visuomotor Skills

The visuomotor skills library consists of essential skills
including FindPer, FindObj, GazeAtObj, PickObj, FindTar and
PlaceObj, all integral for assisting the human.

FindPer: this policy directs the agent to find a person in an
unseen environment. The input observation space includes data
from the robot’s head camera depth, semantic segmentation,
the robot’s pose relative to its starting position, and joint sensor
readings indicating the states of camera and arm joints. The
policy produces actions for translation and rotation, along with
a discrete stop action. Success for this skill is achieved when
the agent triggers the stop action upon reaching within 1 meter
of the human while also facing them.

FindObj: the policy is used to help the agent in finding
a goal object. The agent explores the environment until it
reaches the goal object. In addition to input observation space,
we include the CLIP [56] embedding of the goal object and the
category of the receptacle on which the object can be found.
We provide two channels, one displaying all instances of goal
object and the other showing all instances of candidate start
receptacle. Success for this skill is achieved when the agent
triggers the stop action upon reaching within a distance of 0.1
meters from one of the viewpoints of a start receptacle while
facing the goal object.

GazeAtObj: the gaze skill assists the agent in making final
adjustments before grasping the object. These refinements
include positioning the agent within arm’s length of the object
and ensuring that the object is both centered and visible. The
robot moves close to the object and fine-tunes its head tilt until
the object is both nearby and centered. Success is determined
by the center pixel of the camera aligning with a goal object
and the agent’s base being within 0.8 meters of the goal object.

PickObj: once the robot reached the correct position, the
PickObj skill activates the gripper to grasp the object. Due
to constraints within the simulator, the process of simulating
the physical grasping action is not achievable but the object is
instantly attached to the agent’s gripper. The approximation,
while present, poses no significant limitation when deploying
on a real robot, as the agent can leverage diverse specialized
methods for grasping, provided that the object remains clearly
visible and within arm’s reach.

FindTar: we use this policy to find the candidate target
receptacle on which the robot can place the goal object.
This policy is similar to FindObj but we only pass CLIP
[56] embedding of the target receptacle category into the
input observation space as a single channel that displays all
instances of candidate target receptacles. Success for this skill
is achieved when the agent triggers the stop action upon
reaching within 0.1 meters from one of the viewpoints of a
target receptacle.

PlaceObj: the agent uses its arm to accurately place the
goal object, when near the target receptacle. It approaches the
receptacle, opens its gripper, and proceeds to place the object
onto the specified surface. However, when the robot delivers
an item to a person, it extends its arm toward the person to
offer the item for collection. Success is achieved if the agent
extends its arm to release the object onto the target receptacle
or offer the object to the person while avoiding any collision.

V. EXPERIMENTS AND RESULTS

We utilized HomeRobot [3] framework in the Habitat sim-
ulator [5] to train five distinct RL policies (FindPer, FindObj,
GazeAtObj, PickObj,FindTar, PlaceObj) using DDPPO [57]
with a slack reward of −0.005 per step, encouraging task
completion with the fewest steps possible. These policies
predict actions given depth, ground truth semantic segmen-
tation, the robot’s pose relative to its starting position, and
proprioceptive sensors (such as joints and gripper state). The
action space comprised four possible actions: move forward
(0.25cm), turn right (10degrees), turn left (10degrees), and



TABLE I
INDIVIDUAL AND OVERALL SR (IN %) FOR DIFFERENT TASKS WITH

GROUND-TRUTH AND PREDICTED VISUAL SEMANTIC SEGMENTATION.
THE OVERALL SR COINCIDES WITH THE SR OF THE PLACE/DELIVER

SKILL.

Segmentation Task FindPer FindObj PickObj FindTar Overall Partial
Success Success

groundtruth

V1.1 78.67 49.77 44.40 37.39 31.66 57.20
V1.2 78.67 44.22 40.12 33.66 23.08 43.95
V2.1 78.67 49.77 44.40 33.75 28.84 47.08
V2.2 78.67 44.22 40.12 30.66 26.02 43.93

DETIC [58]

V1.1 70.52 19.75 9.10 6.91 3.58 21.97
V1.2 70.52 15.83 8.73 6.82 3.33 21.04
V2.1 70.52 19.75 9.10 7.18 6.36 22.58
V2.2 70.52 15.83 8.73 6.67 5.88 21.52

stop. We utilized reduced-resolution images of 160 × 120
to expedite training compared to the original 640 × 480
resolution. To measure the impact of an imperfect visual
perception, we used both ground-truth segmentation as well as
semantic segmentation predicted by DETIC [58]. We assessed
the proposed approach across 11 modified environments from
the HSSD [4] dataset that were not seen during training. This
allowed us to assess the generalization ability of the learned
policies to previously unseen environments.

We run a total of 1100 evaluation episodes, each scene
comprising 100 episodes. Table I presents the quantitative
results for all task versions. We report the SR of each skill
individually, as well as the overall SR. Additionally, we
include the partial SR, which represents the average success
in all skills. Our proposed approach achieves an overall SR of
31.66% and 28.84% for V 1 and V 2, respectively. However,
when DETIC [58] segmentation is used, the SR drops to 3.58%
and 6.36% for V 1 and V 2, respectively. This highlights the
increased difficulty of tasks when an imperfect segmentation
is available, as segmentation predictors often struggle to accu-
rately segment smaller objects. Analyzing the performance of
the different tasks separately, we can notice that specifically
for the FindPer and FindObj tasks there is a significant room
for improvement (SR of 78.67% and 49.77% for the FindPer
and FindObj with ground-truth segmentation, respectively).
This result suggests that further effort should be devoted to
improving these sub-tasks, which are critical for the effective
deployment of assistive robots. While our approach faces
challenges in certain task variations, particularly when perfect
segmentation is unavailable, it still holds promising potential
in aiding humans with daily tasks in indoor environments.

VI. CONCLUSIONS

In this paper, we propose an assistive robotic system
capable of understanding human needs expressed through
natural language, formulating an action plan, and executing
it without prior knowledge of the environment’s layout or
privileged information about the location of objects. Despite
challenges, our approach demonstrates promising potential in
assisting humans with daily tasks in home environments, while
highlighting the critical components of the system that should
be improved to increase its overall success rate and reliability.

As we refine our methods and adapt to diverse scenarios, we
anticipate further enhancements in the robot’s performance and
ability to seamlessly collaborate with humans in real-world
environments. In the future, we plan to test our method in
real-world lab settings.
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twenty-thousand classes using image-level supervision,” in European
Conference on Computer Vision. Springer, 2022, pp. 350–368.


