Food vs Non-Food Classification

Francesco Ragusa¹, Valeria Tomaselli², Antonino Furnari¹, Sebastiano Battiato¹, Giovanni Maria Farinella¹

¹University of Catania - Department of Mathematics and Computer Science

²STMicroelectronics - Advanced System Technology - Computer Vision

francescoragusa@outlook.com, valeria.tomaselli@st.com, {furnari,battiato,gfarinella}@dmi.unict.it

 Food vs Non-Food Classification

 Life-Log

 Image: State of the experiments

 Image: State of the experiments

Further Analysis

Flickr-Food and on the remaining 422 samples of Flickr-NonFood.

We consider three popular CNN models: AlexNet, VGG and Network in Network and the following classification schemes:

1. Binary SVM trained on CNN features;

- 2. One-Class SVM trained on CNN features;
- 3. Fine-tuned CNN network;
- 4. Binary SVM trained on finetuned CNN features;
- 5. One-Class SVM trained on finetuned CNN features.

Food vs Non-Food

images of Filckr-NonFood. Testing is performed on ture

Training is performed on UNICT-FD889 and the 3483

Existing approaches been generally evaluated using different methodologies and data, making a real comparison of the performances of existing methods unfeasible. We consider the most recent classification approaches employed for food vs non-food classification, and compare them on publicly available datasets.

Online Demo

http://iplab.dmi.unict.it/demofood/

Dataset

samples respectively.

(a) UNICT-FD889 (http://iplab.dmi.unict.it/UNICT-FD889/)

References

- [1] Giovanni Maria Farinella, Dario Allegra, Marco Moltisanti, Filippo Stanco, and Sebastiano Battiato. Retrieval and classification of food images. *Computers in Biology and Medicine*, 77:23–39, 2016.
- [2] Giovanni Maria Farinella, Dario Allegra, Filippo Stanco, and Sebastiano Battiato. On the exploitation of one class classification to distinguish food vs non-food images. In *International Conference on Image Analysis and Processing*, pages 375–383, 2015.
- [3] Giovanni Maria Farinella, Marco Moltisanti, and Sebastiano Battiato. Classifying food images represented as bag of textons. In *IEEE International Conference on Image Processing*, pages 5212–5216, 2014.

(b) Flickr-Food (http://iplab.dmi.unict.it/madima2015/)

(c) Flickr-NonFood (http://iplab.dmi.unict.it/madima2015/)

60,00% -															
50,00%															
40,00%															
30,00%															
20,00%															
10,00%															
0,00%	Rippry SV/M	Opo-Class SV/M	SoftMax	Binary SVM	One-Class SVM	Ripary SV/M	Opo-Class SV/M	SoftMax	Binary SVM	One-Class SVM	Binary SV/M	Ono-Class SV/M	SoftMax	Binary SVM	One-Class SVM
	Dillary Svivi	Une-Class Svivi	(Fine-Tuned)	(Fine-Tuned)	(Fine-Tuned)	Dillary Svivi		(Fine-Tuned)	(Fine-Tuned)	(Fine-Tuned)	Dillary Svivi	One-Class S vivi	(Fine-Tuned)	(Fine-Tuned)	(Fine-Tuned)
	AlexNet				VGG					Network In Network					
Accuracy	84,95%	83,71%	86,41%	94,86%	87,16%	92,47%	78,55%	91,84%	91,46%	91,99%	90,82%	47,71%	84,77%	84,85%	71,52%
TPR	71,47%	71,15%	74,94%	94,28%	76,73%	87,30%	61,16%	86,37%	84,66%	90,34%	84,35%	0,87%	71,76%	71,88%	82,02%
	99 59%	97.35%	98 87%	95.50%	98.48%	98.08%	97,44%	97,78%	98,91%	93,78%	97,85%	98,60%	98,91%	98.94%	60.11%