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Abstract. This research focuses on equipping robots with a diverse set
of manipulation skills crucial for a wide range of assistive applications.
We begin by exploring interactive perception for articulated object ma-
nipulation, enabling robots to handle objects with complex joints, such
as doors and drawers. Building on this, we address deformable object
and garment manipulation, where robots learn to manage more complex
items like shirts. Next, we investigate collaborative bimanual manipu-
lation, allowing robots to further perform coordinated tasks with both
arms. Finally, we consider the complexity of real-world environments, em-
powering robots to operate effectively in diverse and dynamic scenes To-
gether, these advancements facilitate the deployment of assistive robots
in various real-world scenarios.

Interactive Perception for Articulated Object Manipulation

To help humans perform everyday tasks, future assistant robots need to gain the
capabilities of perceiving and manipulating diverse objects in human environ-
ments. Articulated objects that contain functionally important and semantically
interesting articulated parts (e.g., cabinets with drawers and doors) require sig-
nificant attention, as they are more often interacted with by humans. Having
much higher degree-of-freedom (DoF) state spaces, articulated objects are, how-
ever, generally more difficult to understand and subsequently to interact with
To manipulate an articulated object, traditional methods usually design
heuristic policies, lacking generalization to diverse scenarios. For instance, to
open a door, they detect the handle, grasp the handle and execute a calculated
trajectory. However, the diverse handle geometries make it difficult to compute
accurate grasp poses for different handles, let alone doors without handles.
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(a) Point-Level Affordance (b) Affordance Adaptation (c) Adaptive Manipulation with Mechanisms
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Fig. 1: Point-level affordance (a), affordance adaptation via active interactions tackling
kinematics ambiguities (e.g., on which side to open the door without a handle; the effect
of surface friction in pulling the drawer) (b), and adaptive manipulation on objects with
different mechanisms (e.g., rotate or push button to unlock before manipulation) (c).
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The success of Computer Vision reflects, learning based methods have promis-
ing performance in finding out essential features for a task using large-scale data
with promising generalization capability. For many manipulation tasks, the most
essential property of objects is whether the geometry around the target manipu-
lation point (e.g., a point on the handle), can afford the action to fulfill the task.
Such property is in align with Affordance proposed by Gibson [3] in the per-
point level. Demonstrated in Figure 1 (a), my research [13] proposes learning to
perceive such geometry-aware point-level affordance using large-scale trial-and-
error data generated by large-scale interactions, with actionable points colored
in orange and red, and trajectory proposals for downstream tasks.

Given pure passive visual observations for perception and manipulation, there
exist uncertainties that require robots to actively explore target objects and then
adapt policies. Such uncertainties mainly come from two aspects, kinematics and
geometries. Kinematic ambiguities include joint limits (e.g., push inward or pull
outward for a door) and axis (e.g., where to pull, shown in Figure 1, b, upper),
and physics parameters like friction and mass (Figure 1, b, lower). Geometry
ambiguities refer to unseen local geometries. My studies [8, 14] respectively inte-
grate passive visual inputs with active actions by exploring points that mostly
reflect kinematic and geometric uncertainties, using interaction results to adapt
affordance and policies. Further, for objects with complex manipulation mecha-
nisms, we set up environments with diverse mechanisms [6] and propose adaptive
policy to tackle difficult mechanisms via interaction trials (Figure 1, ¢).

Deformable Object and Garment Manipulation

Compared with rigid and articulated objects, deformable objects pose much more
challenges for manipulation, due to the exceptionally large and even infinite state
and action spaces and highly complex dynamics. Besides, unlike tasks for rigid
(like grasping) or articulated objects (like pushing a door) that require one or
only a few steps, deformable object manipulation (like unfolding) usually requires
many steps to accomplish, making it difficult for models with limited capacities
to learn complex states in different steps.

My study [11] leverages point-level affordance to represent deformable ob-
jects, as per-point representation is a natural match for deformable objects with
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(a) Long-Horizon Rope and Fabric Manipulation (b) Garment Manipulation (¢) Garment Benchmark

Fig. 2: Diverse deformable object manipulation, from relatively simple ropes and fab-
rics (a), to more complex garments (b), and the corresponding unified benchmark (c).
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complex states. We further empower learned affordance with the awareness of
future steps to support multi-step long-horizon manipulation (Figure 2, a).

Among different kinds of deformable objects, garments, such as shirts, dresses
and trousers, are highly essential for the various real-world applications, while
typically challenging for their diverse shapes with large deformations. For gar-
ments with different deformations, to have an unified understanding of garments
and thus facilitate a long range of downstream tasks, my study, UniGarment-
Manip [10], leverages the topological and structural similarity of garments in the
category level, and thus can manipulate unseen garments only one- or few-shot
demonstrations on a demonstration garment.

Furthermore, while most studies only focus on a certain garment type or
a certain manipulation task, we propose a unified simulation environment and
benchmark [7] supporting manipulating more than 10 categories of garments
with different materials (such as shirts, hats, ties and socks) simulated by differ-
ent methods, with diverse manipulators (such as mobile robots, dexterous hands
and dual-arm robots), boosting the broad and thorough study, as well as future
large-scale applications of garment manipulation.

Collaborative Bimanual Manipulation

Many tasks, such as steadily picking up a heavy basket and assembling broken
parts into a whole shape, cannot be fulfilled using a single arm. However, it is
much more challenging to conduct such bimanual manipulation, as the degree-of-
freedom in action space is doubled. Besides, the proposed pairs of actions must
be aware of collaborations.

My study, DualAfford [15], disentangles affordance and policy learning of two
arms into two separate yet highly coupled subtasks, reducing the complexity from
a intrinsically quadratic problem into a conditional problem by sequentially and
conditionally predicting the two arms’ affordance (Figure 3, a). Further studies
tackle the more challenging geometric assembly task [1,12] (Figure 3, b) by
taking both the geometry of breaking parts and the collaboration of two arms
into consideration. Additionally, for garments with both large state and bimanual
action space, my work [10] leverages point-level correspondence as the guidance

for few-shot bimanual manipulation (Figure 3, ¢).
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(a) Bimanual Affordance (b) Geometric Assembly (¢) Bimanual Garment Manipulation

Fig. 3: Bimanual affordance for picking up a bucket and a basket (a), bimanual col-
laboration for geometric assembly (b).
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Manipulation in Complex Environments

Most existing works on manipulation primarily focus on single-object scenar-
ios with homogeneous agents such as flying grippers. Consequently, these ap-
proaches tend to develop object-centric representations and policies, neglecting
the realistic constraints imposed from or benefits brought by complex environ-
ments, which are commonplace in real-world scenarios. For example, successfully
opening a cabinet door that is obstructed by occluders not only depends on the
properties of the target door but also heavily relies on the robot’s position and
the way it interacts (e.g., colliding or bypassing) with the occluders.
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Fig. 4: Diverse environments for manipulation.

My study [9] formulates the task of environment-aware affordance learn-
ing to explore manipulation within environment constraints such as occlusions
and robot configurations (Figure 4, b). The following work [5] leverages the
environment-aware affordance for a mobile robot to walk around the occlusions
and then safely accomplish the task. For cluttered scenes which also require safe
manipulation, as disturbing and even breaking other objects will easily happen
when retrieving a specific target object, we leverage support relations between
nearby objects as the constraint to guarantee safety [4] (Figure 4, ¢). On the con-
trary, when the environment brings benefits for manipulation, my study, PreAf-
ford [2], offers a robust solution (affordance learning for pre-grasping manipu-
lation) for grasping hard-to-grasp objects with the support of the environment
(Figure 4, a). For example, while a phone is difficult to grasp, pushing the phone
until part of it is over the edge of the table allows us to robustly grasp that part.
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