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Abstract

Video-based sign language understanding aims to rec-
ognize gloss sequences and translate a spoken sentence
from the corresponding sign video. Compared to other se-
quence processing tasks (e.g., automatic speech recogni-
tion and neural language translation), sign language un-
derstanding datasets have limited samples and only provide
sentence-wise annotations, which brings great difficulties
for effective designs. My doctoral research focuses mostly
on the alignment constraint design with limited supervised
samples on sign language understanding tasks, such as se-
lecting suitable modalities and extraction modules, design-
ing proper visual alignment constraints to relieve overfit-
ting, and exploring the effects of supervision signals. Al-
though the proposed methods improve the performance on
current sign understanding datasets, they still face difficul-
ties in real-world scenarios. Recent developments in foun-
dation models provide a great opportunity to make human-
environment interaction techniques applicable, and my re-
search plan mainly focuses on human-object interaction
modeling and the data closed-loop platform design.
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1. Research Progress
Sign Language is a complete and natural language that
conveys information through both manual components
(hand/arm gestures) and non-manual components (facial
expressions, head movements, and body postures) [16] with
its own grammar and lexicon [20]. Vision-based Sign Lan-
guage Understanding (SLU) aims to automatically recog-
nize gloss sequences1 (Sign Language Recognition, SLR)

1Gloss is the written approximation of a sign.
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Figure 1. Illustration of commonly used modalities for SLU (the
upper) and the relationship between different SLU tasks (the
lower). We leverage the monotonically aligned nature of source
features to design alignment constraints for SLU tasks.

or translate a spoken sentence (Sign Language Translation,
SLT) from a sign video, which can bridge the communica-
tion gap between the Deaf and hearing people. It also pro-
vides more non-intrusive communication channels for sign
language users.

1.1. SLU from Different Modalities

With the success of deep neural networks, SLU attracts
more attention in recent years [9]. A key difference be-
tween SLU and other sequential tasks is its visual nature:
SLU models should localize and identify fine-grained pat-
terns (e.g. hand movements and postures) from video data,
which contain much redundant spatio-temporal informa-
tion and are easily affected by illumination and background
changes. To guide the learning of visual features, previous
works adopt an iterative training scheme [3] and pose-guide
module designs [23]. However, they greatly increase the
training time and make the network design complicated. As
shown in Fig. 1, there are multiple types of modalities for
SLU. We first explore the choice of input modality and pro-
vide solutions for different situations.



SLR from Point Clouds in Close-range Interaction.
Compared to the color camera, the depth sensor is more sen-
sitive to distance changes and is more robust to illumination
and background changes, which can also provide satisfac-
tory segmentation results for close-range interaction. In our
preliminary work [12], we first sample point clouds of sign-
ers from depth videos, and then extend the pioneering Point-
Net++ [18] to make it can process point cloud sequences.
Specifically, we find there is no need to keep the high den-
sity of point clouds in gesture recognition and leverage the
complementary information from neighboring frames can
further reduce the density of point clouds. Therefore, we
randomly sampled 128 points from each depth frame, and
propose a spatio-temporal grouping layer to gather informa-
tion from spatio-temporal local neighbors.

We further propose a PointLSTM module (code is avail-
able 2) to explore the long-term spatio-temporal informa-
tion from point cloud sequences [15]. The orderless of
point clouds is the main challenge to applying LSTM on
point cloud sequences. Therefore, we maintain the hidden
and cell states for each point and update its states based
on its spatio-temporal neighbors. We also proposed an
approach with point-shared states to reduce the computa-
tion costs. Experimental results show that the proposed
PointLSTM can achieve better performance than RGB and
depth video-based methods and approach human recogni-
tion performance. The proposed method also surpasses the
skeleton-based methods on gesture datasets when the esti-
mated results are imperfect.

Visual Alignment Constraints Makes RGB-based
CSLR Networks End-to-end Trainable. Although point
clouds based approaches achieve satisfactory performance
on gesture recognition, RGB sensors can better capture vi-
sual signals (e.g., facial expression) of sign languages, and
most sign videos on the Internet are recorded by RGB sen-
sors. The iterative training scheme [3] is widely used in
RGB-based SLR approaches to capture correct visual sig-
nals, but it greatly increases the training time. To under-
stand the difficulties behind the end-to-end training, we re-
visit the iterative training scheme in SLR and attribute the
problem to the overfitting of the alignment module [13].
To make SLR models end-to-end trainable, we propose two
kinds of visual alignment constraints (code is available 3) as
shown in Fig. 2(b). The visual enhancement constraint en-
forces the feature extractor to make predictions based on vi-
sual features only, and the visual alignment constraint aligns
the short-term visual and long-term contextual predictions.
With the combination of the two constraints, the proposed
SLR model is end-to-end trainable and achieves superior
performance to the latest methods on SLR datasets.

2https://github.com/ycmin95/
pointlstm-gesture-recognition-pytorch

3https://github.com/ycmin95/VAC_CSLR
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Figure 2. Training process comparison on SLR.

Skeleton-based Solutions can Achieve Comparable
Performance with Video-based Solutions. Different to
general actions, the information conveyed in sign language
is totally independent of environments (e.g., backgrounds),
which indicates that conducting SLU on skeleton data is
lossless if the skeleton data are perfect. Besides, skele-
ton data also lay a good foundation for the co-occurrence
signals (e.g., hand shape, facial expression, and lip pat-
tern) exploration in CSLR. We propose a simple yet ef-
fective GCN-based approach named CoSign [6] to incor-
porate co-occurrence signals in SLR and explore the po-
tential of skeleton data. Specifically, we propose a group-
specific GCN to better exploit the knowledge of each sig-
nal and a complementary regularization to prevent com-
plex co-adaptation across signals. Furthermore, we pro-
pose a two-stream framework that gradually fuses both
static and dynamic information in skeleton data. Experi-
mental results on three public datasets show that the pro-
posed CoSign achieves competitive performance with re-
cent video-based approaches while reducing the computa-
tion cost during training.

1.2. Weakly Supervised Sign Localization

To better understand the information conveyed in sign
videos, we need to know not only “what” but also “where”

https://github.com/ycmin95/pointlstm-gesture-recognition-pytorch
https://github.com/ycmin95/pointlstm-gesture-recognition-pytorch
https://github.com/ycmin95/VAC_CSLR


Text:       Darunter zum teil schneeregen.

（Partly sleet underneath.）

Gloss:     桌子 下 猫 在Gloss:     AUCH DABEI SCHNEE REGEN

Sign Video

(also) (there) (snow) (rain)

S2T

SLR

G2T

Figure 3. An example from Phoenix14T [1]. The goal of SLR is to
recognize a gloss sequence, which is monotonically aligned with
sign clips, from the sign video. S2T and G2T aim to translate sign
videos and gloss sequences into spoken language sentences, and
G2T is often regarded as the ‘upper bound’ of S2T.

the signs occurred. CTC loss is a popular objective function
in sequence recognition tasks, which provides supervision
for unsegmented sequence data through aligning sequence
and its corresponding labeling iteratively. However, net-
works trained with CTC will conservatively predict a series
of spikes, and they are hardly to provide accurate bound-
aries for occurred signs.

RadialCTC Controls the Peaky Behavior of CTC by
Modifying the Logit of the Blank Class. To explore the
alignment between gloss sequences and video clips, we re-
visit the iterative alignment of CTC. The blank class of
CTC plays a crucial role in the alignment process and is of-
ten considered responsible for the peaky behavior of CTC.
We propose an objective function named RadialCTC that
constrains sequence features on a hypersphere while retain-
ing the iterative alignment mechanism of CTC [14]. The
learned features of each non-blank class are distributed on a
radial arc from the center of the blank class, which provides
a clear geometric interpretation and makes the alignment
process more efficient. Besides, RadialCTC can control the
peaky behavior by simply modifying the logit of the blank
class. Experimental results of recognition and localization
demonstrate the effectiveness of RadialCTC on both SLR
and scene text recognition.

1.3. Utilization of Visual Signals in SLT

As a typical visual language, sign language has its own
grammar and lexicon, which means that SLR results do not
correspond to the linguistic habit of the hearing. SLT is an
essential step to further bridge the communication gap be-
tween the Deaf and hearing people. Similar to SLR, SLT
also faces the data scarcity problem, but it can leverage
powerful large language models. A pioneering work [2]
shows the potential of mBart [11] on SLT, which signifi-

cantly improves the translation quality on public datasets
but inevitably faces the hallucination problem [5]. In other
words, the SLT models tend to generate fluent but inade-
quate translation, and we attribute this problem to the lack
of faithfulness (i.e. the SLT models fail to capture correct
visual signals). Our recent work focuses on the utilization
of visual signals in SLT.

Alignment Constraints can Improve Faithfulness of
SLT Networks. Gloss sequences play a critical role in both
SLR and SLT. As shown in Fig. 3, the monotonous align-
ment between the gloss sequence and sign clips makes it
possible to leverage CTC to provide supervision for SLR.
On the other hand, Gloss sequences are widely used as the
input of Gloss2Text (G2T) task to estimate the upper bound
of Sign2Text (S2T) task. However, as a visual language,
sign language conveys information through multiple visual
signals and glosses are imprecise representations. We ex-
plore the association among different SLT subtasks and in-
tegrate them into a unified framework. We further propose
two kinds of constraints: the alignment constraint aligns the
visual and linguistic embeddings and the consistency con-
straint integrates the advantages of subtasks. Experimen-
tal results show that the proposed method is competitive
against previous SLT methods by increasing the utilization
of visual signals, especially when glosses are imprecise.

2. Ongoing and Future Directions
To summarize, my research in computer vision and pat-

tern recognition focuses on algorithms that learn to under-
stand sequential data with weak supervision, especially for
sign videos, and by leveraging the alignment of spatial and
temporal cues in videos. My previous efforts mainly focus
on the perception of human behavior, especially through
sign language, and my final goal is to build an AI system
that has the capabilities of perception, reaction, and inter-
action. There is still a long way to go before reaching this
goal, and below I outline four topics that I plan to pursue.

• Pracitcal Sign Language Understanding System.
With the rapid development in recent years, a SLU
model can produce accurate recognition (< 20%
WER) and translation (> 28% BLEU-4) results on
public datasets. However, there is still a large gap be-
tween sign language datasets and realistic scenarios.
Current datasets are often collected under constrained
conditions and it is worth further studying the perfor-
mance of SLU models in wild scenarios with diverse
signers and conversational signings. The first step is to
build a data engine that can collect high-quality sign
videos from the Internet automatically and then design
a suitable benchmark to evaluate the generalization
ability of SLU models. The final goal is to leverage
the data engine to design a unified visual tokenization



with minimal information loss and the corresponding
large language model, which can integrate SLU into
NLP systems seamlessly [21]. The whole process is
challenging and collaboration with the Deaf commu-
nities is essential to make the final system practical.

• Fine-grained Human-Object Interaction (HOI).
Similar to SLU, hands play a dominant role in hu-
mans’ interactions with objects. How to understand
state changes caused by human manipulation is essen-
tial for HOI [4]. Recent hand-centric low-level tasks
(e.g. hand pose estimation and HOI) and high-level
tasks (e.g. gesture and sign language understanding)
are nearly independent, but the final goal of both kinds
of tasks is consistent: build an efficient human envi-
ronment interaction system. Previous research shows
that the ability of infants to imitate [7] is the emer-
gent product of a system of social, cognitive, and mo-
tor components. I believe one potential way is to com-
bine different supervision signals from both low levels
(e.g., hand and object keypoints) and high levels (e.g.,
gesture and interaction type) with a unified framework.
Intuitively, the high-level interaction is easier to pre-
dict when low-level predictions are accurate, and the
low-level predictions are more reasonable with proper
high-level guidance. Besides, the physical constraints
are essential.

• Fine-grained Human Motion Generation. Generat-
ing human action from text is a challenging yet fas-
cinating research goal. Recent work [22] focuses on
body motion generation, but hand motion generation
is a more challenging but essential task. According
to my experience of SLU, the set of gestures is finite
and unified across the world, it is essential to build a
large language model for gesture understanding and
generation. I believe the discrete nature of language
is essential to the success of recent foundation mod-
els [19, 17], which provides a stable mapping for learn-
ing and greatly reduces the search space. Compared to
images, skeleton data are more suitable to be tokenized
as a universal representation for different downstream
tasks, including both recognition and generation. How
to achieve this goal is challenging yet fascinating.

• Data Closed-loop Platform. Compared to using ex-
pensive mocap data, the massive interactive data on
the Internet can be leveraged in a self-supervised man-
ner, which provides a good supplement to real-world
data and improves the generalization and robustness of
HOI approaches. With the rapid development of vi-
sion techniques [8, 10], it becomes feasible to build an
automatic data annotation engine to collect data from
the Internet. Moreover, it is feasible to build a data

closed-loop platform if the first two topics go well.
From the generation side, the skeleton sequence can
be generated by first building an action-style embed-
ding space, then sampling an action style, and finally
generating the corresponding sequence. The generated
sequences can be used to improve the generalization of
basic models for HOI for the interaction side.
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