A Multi-Task Learning Approach for Meal Assessment
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ABSTRACT

Key role in the prevention of diet-related chronic diseases plays
the balanced nutrition together with a proper diet. The
conventional dietary assessment methods are time-consuming,
expensive and prone to errors. New technology-based methods
that provide reliable and convenient dietary assessment, have
emerged during the last decade. The advances in the field of
computer vision permitted the use of meal image to assess the
nutrient content usually through three steps: food segmentation,
recognition and volume estimation. In this paper, we propose a
use one RGB meal image as input to a multi-task learning based
Convolutional Neural Network (CNN). The proposed approach
achieved outstanding performance, while a comparison with
state-of-the-art methods indicated that the proposed approach
exhibits clear advantage in accuracy, along with a massive
reduction of processing time.
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1 INTRODUCTION

Meal assessment in terms of calories and macro-nutrient content
estimation increasingly becomes more and more important for
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individuals that want to follow a healthy lifestyle. Traditionally,
dietary assessment is based on self-maintained dietary records
and food frequency questionnaires [1], which are time consuming,
expensive and pruned to errors. In addition, studies have shown
that even well-trained end-users, such as individuals with type 1
diabetes, cannot precisely estimate the meal’s nutrient content
[2]. Therefore, innovative approaches able to real-time, reliable
and accurate estimate the nutrient content of meals are highly
desirable.

The last years, research is conducted in calories and nutrients
estimation by directly analyzing the meal’s image as taken by the
smartphone’s camera. Nowadays, smartphones are equipped with
high-quality camera and hardware that allows the execution of
artificial intelligence and computer vision algorithms on the
phone. In an ideal scenario, the users need to install a dedicatedly
designed application in a mobile phone. By analyzing one or more
meal images acquired by the phone’s camera, the food type and
the associated nutrient content could automatically be identified.
The analysis usually involves four stages: i) food item detection
and segmentation, ii) food recognition, iii) volume estimation and
nutrient content calculation. Among them, the performance of the
first three stages highly relies on the used AI algorithm and food
multimedia dataset available, while the last on the quality of food
composition database.

The first two stages are usually treated by directly employing
well established segmentation and recognition methods [3-8],
while food volume estimation tends to be addressed by geometric-
based approaches involving more than one meal images and
execution times longer than 5 seconds [9, 10].

In this paper, a multi-task learning (MTL) method is proposed
aiming to realize the first three stages through one single network.
MTL is a subfield of machine learning, which aims to improve the
generalization performance of multiple tasks in parallel by
sharing representations among these tasks [11]. In the proposed
approach, an RGB food image is fed to the network; food



Figure 1: Some results of the proposed method:
(a) and (c) are the input images, while (b) and
(d) are the output results

segmentation and recognition are obtained by using instance
segmentation-based approach, while food volume is inferred by
the predicted food depth image and segmentation result.

Fig. 1 presents two examples of the proposed method, where (a)
and (c) are single RGB image inputs, and (b) and (d) are outputs
containing the pixel-wise segmentation map, as well as the
corresponding food categories and respective volumes. The
execution time of the entire procedure is 0.2 sec / image using
GPUs. The performance, in terms of accuracy, of food
segmentation and volume estimation outperforms the state-of-
the-art.

2 RELATED WORK

2.1 Food Segmentation

Many of the well-known image segmentation algorithms have
been applied to food images. At early stage, Shroff et al. [3] used
adaptive thresholding method for food segmentation, which can
only work under simplified condition where the plate must be
white, and all the food items clearly spatially separated in.
Anthimopoulos et al. [4] employed mean-shift clustering in the
CIELab color space to achieve multiple connected food
segmentation in a given plate. Dehais et al. [5] used traditional
region growing assisted by CNN based border detection,
achieving better performance, but in cost of computational
resources. Aguilar et al. [6] combined food/nonfood binary mask
and food localization bounding box to get pixel level food
segmentation map, which is however invalid when there is large
overlap among food localization bounding boxes.

2.2 Food Recognition

The food recognition problem is strongly related to the
availability of food image databases. The quality and size of public
food databases determine the performance of food recognition
algorithms, therefore building a reliable database is of critical

importance. The first published database was Pittsburgh Fast Food
Images Dataset (PFID) [12], which contains 101 food items from
11 fast food chains. After that, a dataset named “Food101” with
larger size was presented [13], containing 101,000 images
belonging to 101 food classes. More recently, Matsuda et al. [14]
proposed the UEC FOOD 100 database, in which 9060 food images
referring to 100 Japanese food types are dedicatedly built. As an
updated version with respect to UEC FOOD 100, UEC FOOD 256
[15] extended the food classes and number of images to 256 and
31651, respectively. To further promote the development of food
recognition, a database involving 211 fine-grained food categories
with 101733 training images, 10323 validation images and 24088
testing images is published, which has been employed for on-
going iIFOOD2018 food recognition challenge [16].

From algorithmic point of view, Shroff, et al. [3] proposed the
first food recognition system using color, texture, and shape
features for four kinds of food. Anthimopoulos et al. [17] proposed
a Bag-of-Feature (BoF) model-based method for automatic
diabetic food recognition. Farinella et al. [18] proposed an “Anti-
Texons” feature representation approach to further enhance the
accuracy of food recognition. Recently, deep CNN have been used
for food recognition [7, 8, 12], which significantly improved the
accuracy on large food databases. An accuracy of 89% has been
achieved on Food101 [13] and 83.15% on UECFo0d256 [19]. These
performances are obtained using fused multiple neural network
architectures and deep residual network, respectively.

2.3 Food Volume Estimation

The first food volume estimation system was proposed by Chen,
et al. [20]. It used a single view image as input, required a
dedicated shape model for each food category and a calibrated
reference card. Puri et al. [9] used a dense multi-view 3D
reconstruction approach, which generated the 3D point cloud of
the food based on a video sequence and plate-sized reference
patterns. Recently, Dehais et al. [10] proposed a two-view 3D
reconstruction approach using a credit card sized reference card.
The approach was extensively tested on real dishes of known
volume, and achieved an average error of less than 10% in 5.5
seconds per dish. The methods are integrated into a smartphone
application, named GoCARB, and has been validated within a
clinical trial, showing that the method is able to estimate the
carbohydrate content on meals at free-conditions and indicating
that the use of such an application positively impact the glucose
control of individuals with diabetes [21].

2.4 Depth Prediction

Inferring depth image from RGB images has been extensively
researched over the last years [22-25]. However, in the field of
dietary assessment only a limited number of work has been
reported mainly due to lack of data. A first attempt has been
reported by Allegra et al. [26], which applied a SegNet-based [27]
CNN architecture for single food image depth prediction.
Recently, Christ et al. [28] proposed a CNN architecture with skip
connections for food image depth prediction.



Feature
extraction
module

Depth Net
. p

/ /Classification Net

Input AR
ResNet50 FPN

m

Mask Net I Volume Net

Figure 2: Multi-task learning network architecture

3 METHOD

3.1 Network Architecture

The introduced method is based on instance segmentation
extended to additionally perform volume estimation. Instance
segmentation  performs segmentation and recognition
simultaneously, using both semantic segmentation and instance
identity [29, 30]. Driven by the effectiveness of region-based
convolutional neural network (R-CNN) approach [31], He et al.
[32] proposed the Mask R-CNN framework for instance
segmentation, which applies an additional branch based on Faster
R-CNN framework [33]. This Mask R-CNN approach surpasses all
previous state-of-art methods for instance segmentation task [32].
Instance segmentation has proven to perform well for the object
occlusion or near-connection cases, implying a potential use for
food segmentation and recognition.

Differently than in the Mask R-CNN classic architecture, we
extend it with newly designed modules conducting volume
estimation. The overall network architecture of the proposed
algorithm is presented in Fig. 2. It contains six main components:
feature extraction module, depth prediction net, Region Proposal
Net (RPN), recognition net, mask prediction net, and volume
estimation net.

Among them the modules in green are maintained from Mask
R-CNN [32], being responsible for food recognition and
segmentation based on the 2D information of the image. In
particular, the feature extraction module is composed by ResNet50
[34] and Feature Pyramid Network (FPN) [35]. The working
principle basically consists of two stages: at the first stage, the
RPN along with the feature extraction module preliminary
produce the bounding box for each candidate object; at the second
stage, the features extracted before, are identically resized
associated to all the nominated bounding boxes, based on which
the recognition, bounding-box regression and binary mask
prediction are executed.

The red modules illustrated in Fig. 2 represent the new
components added in the network for food volume estimation.
Different from the previously introduced modules, the output
from the “Volume Net”, which reports the final volume value,
requires 3D information of the food objects. In other words, the
3D features of the image must be extracted in advance, which is
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Figure 3: Architecture of depth net. Green layers are
encoder part provided by FPN, while yellow layers
are decoder layer. Orange layer is the point cloud
convention layer

realized by adding a depth prediction branch implemented
between the feature extraction and RPN modules. In this module,
a depth map is used as ground truth for performing supervised
learning. Note that since the final volume estimation module uses
the resized 2D and 3D features, the scale information of each food
candidate, which is essential for calculating volume, is not able to
be maintained. In order to tackle this issue, we propose to convert
the predicted depth into point cloud, which feeds to the RPN
module. The detailed description of the newly introduced “Depth
Net” and “Volume Net” are presented in the following.

Depth Net: The architecture of Depth Net is shown in Fig. 3,
and is mainly based on an encoder-decoder design architecture
with skip connections and multi-scale side predictions, followed
by a point cloud layer. Since the encoder part requires pyramid
feature layers from a single scale input, which are in total
similarity with the FPN output in the previous feature extraction
module, the latter (green layers in Fig. 3) is adopted to act as the
encoder part of our Depth Net. The kernel size and output channel
for all the convolutional/deconvolutional layers are 3 and 256,



respectively, in order to adapt the FPN output. In the network
presented in Fig. 3, all the convolutional/deconvolutional layers
(in yellow) are followed by batch normalization layers and RELU
activation, and the prediction layers (in purple) are followed
sigmoid activation to constrain the prediction depth in the range
of 0~1m. With this network, the depth image is predicted in 4
different scales in total, which range from 64x64 to 256x256.
Among them the first three (3) smallest scales contribute to
improve the depth prediction accuracy, and only the largest one
is used for point cloud converting.

For a given largest depth map d;, the 3D point cloud, denoted
as X} = (x},y},z}),i € 1,..,w x h (w and h are the image width
and height, respectively), can be readily calculated according to
the pinhole camera model:

XI ul
Xi=y =K7Y ®
Z dj

where (ul, v}) is the pixel position on image, d is the depth value
of the ith pixel, and K is the camera matrix, which is represented
as:

f, 0 c
K=0 f, c (2)
0 0 1

where (¢, Cy, fy, f,) index the camera intrinsic parameters.

Volume Net: It is implemented to achieve the volume
estimation of food objects based on the foreground mask of the
food candidate from mask net and the resized features provided
by RPN net. We apply two (2) convolutional layers with kernel
sizes of 7 and 1, respectively, and the output channel for both
convolutional layers is 1024. Both the convolutional layers in this
module are followed by batch normalization and RELU activation
function. In addition, 1 average pooling layer with kernel size of 2
is applied before the 274 convolutional layer, and 1 dense layer is
utilized as the last layer to get the regressed volume.

3.2 Loss Function

Formally, during training, we define a multi-task loss on each
input image as:

L= Z Lﬁepth + Z(Lcls + Lbbox + Lmask + L\/ul) (3)

S Rol

where S indexes over the 4 predicted scales for depth image, Rol
represents the food candidates output from RPN. In (3), the
definition of recognition loss L5, bounding box loss L., and
object mask loss L, are identical as those in [32], while the
Lgeptn is defined as multi-scale mean absolute error loss. The Ly,
is the combination of absolute percentage loss and absolute loss:

+a\\7—v*\ (4)

-V
I‘vol = V*

where v* is the groundtruth volume, ¥ is the predicted volume,
and a is the weighting for the absolute loss.

3.3 Implementation Details

The experiments in this paper are conducted on a machine with
NVIDIA GeForce Titan X GPU under a Linux OS. The whole
framework is implemented using the Keras [36] with Tensorflow
backend [37].

We set most of the hyper-parameters following [32], which we
found robust. As the concept in [32], a Rol is considered positive
if it has Intersection of Union (IoU) with a ground truth bounding
box lager than a threshold, and negative otherwise. Instead of
using 0.5 as the threshold defined in [32], we set it to 0.7 targeting
at achieving more precise volume value. Same with the use of the
mask loss in [32], the volume loss is also valid only on positive
Rols. The threshold we set for positive Rol in the experiment is
0.7. The weight « in volume loss calculation of (4) is set as 0.01.
The weight of ResNet50 is initialized with ImageNet pretrained
weight. The camera matrix is set as [1, 0, 0.5; 0, 1, 0.5; 0, 0, 1].

During training, all the input RGB-D image pairs are cropped
into 1024 1024, and then the depth images are resized into
256X256. We trained the network for 60K iterations in total, with
initial learning rate of le-3, which is set to le-4 after 40K
iterations. We use SGD optimizer with weight decay of 1e-4 and
amomentum of 0.9. To increase the image variability, we augment
the dataset by considering left-right and up-down flips during
training.

Testing procedure solely requires one single RGB image as
input. The proposal number of bounding boxes for FPN is set as
1000. We run the RPN branch on these proposals to get 50
proposal candidates with the highest scores. Based on these, the
recognition branch, mask branch and volume estimation branch
are then applied.

4 EXPERIMENTAL RESULTS

4.1 Datasets

We used the Madimal7 dataset [26] as the training and evaluation
datasets, providing 80 central-European meals and 21 detailed
food categories. Each meal contains 2-4 food items, all of them of
known volume (ground truth). It must be mentioned that the 21
food categories are merged into 6 broad categories (i.e. potato,
meat, carrot, pasta, vegetable, rice), in order to assure a sufficient
number of images for each food category. For each meal 6 RGB-D
image pairs at a fixed resolution of 1920x1080 are available, 4
captured at distances of 40cm and 60cm, with 90° and 60° angles
of view, respectively, and the rest 2 from random position
(distance and angle).

In the dataset, we allocate 60 meals for training, 10 meals for
validation, and the remaining 10 meals for testing. To perform
comparisons thoroughly, we build three types of testing datasets:
1) “fixed set”, which contains the samples captured only with 90°
angle at 40cm distance; 2) “free set”, which only contains the 2
randomly chosen samples; 3) “full set”, which contains all the 6
capture samples for each meal.



Note that despite the testing data is divided in three types, the
training data exploits the full dataset, i.e., four (4) image pairs
taken from fixed positions and two (2) image pairs taken from
randomly positions, to keep the generality of the work.

4.2 Food Segmentation and Recognition

In this section, we firstly use region-based metrics [26, 38] and the
confusion matrix to evaluate the performance of food
segmentation and recognition, respectively, and then we
simultaneously examine the performance of both segmentation
and recognition by employing standard Average Precision (AP)
measures [39].

For the region-based metrics, S = {Si}zl and T = {Ti}?:l are
defined as the predicted and ground truth segments, respectively,
where m and n are the number of segments in S and T. Then, the
two normalized directional indices representing the worst (i.e., the
predicted segment has minimum overlap with the ground truth)
and the average segmentation performance are given as

Max, (\s nTJ\)

NI, (T = S) = Min,
S|

®)

zMaxj(Si ﬂTj\)
Nl (T —>S)=-

leil

For final evaluation, two reversed directions of each index are
combined as:

_2xNI (T - S)x NI (S —>T)

; ,X=min or sum (7)
NIL(T - S)+NL(S—>T)

Table 1 shows the result based on (7), for the food segmentation
evaluation in cases of the proposed method, as well as the state-
of-the-art, such as CNN based border detection method [26] and
region growing/merging method [38]. Note that both latter ones
require an additional step to remove the background from true
dish segmentation in the image. Table 1 indicates that the
proposed method outperforms the other two in terms of both Fnin
and Fsum in the cases of both ‘fixed set’ and ‘full set’, validating the
advantage of the proposed method.

Table 1: Comparison of segmentation method

Fixed set Full set
Method Fsum(%) Fmin(%) Fsum(%) Fmin(%)
Proposed 94.36 83.90 94.10 78.18
Method in [26] 93.69 74.26 - -
Method in [38] 92.47* 73.36* 91.83* 75.33*

*means the value is from our re-implementation

Fig 4 shows the confusion matrix of the proposed algorithm on
the full set. It can be observed that “carrot”, “pasta” and
“vegetable” are perfectly recognized, while “potato” has the worst

performance since 25% of it is mis-recognized with “meat”. This is
mainly due to the fact that some food made by potato, e.g., rosti
(type of Swiss dish consisting of potatoes in the style of a fritter),
looks very similar with a piece of roasted chicken breast.

potato
meat
carrot
pasta

vegetable

meat
carrot
pasta
rice

Qo
=
©
o
Q
Q

vegetable

Figure 4. Confusion matrix on the full set. The
entry in the ith row and jth column corresponds
to the percentage of images from class i that
classified as class j.

Furthermore, “rice” was often misclassified as “pasta”, since in
many cases both of them were served with sauce (and they had
almost identical visual appearance). The average recognition rate
over the six categories is 93.3%, indicating a good recognition
performance of the proposed algorithm.

Table 2 indicates the overall performance of the proposed
module following AP metrics, for both food segmentation and
recognition, using 3 typical parameters namely APso, AP75 and
mAP [39]. Among them, APso and AP75 represent the percentage
of the samples having the IoU value (between predicted segment
and ground truth) larger than 0.5 and 0.75, respectively. and mAP
is the average percentage of the samples with IoU thresholds from
0.5 to 0.95, which is expressed as:

MAP = %ZAPW , loU €[0.5:0.05:0.95] ®)
loU

From the AP values one can observe that the performance of our

algorithm on all the three datasets are similar, indicating that the

module works well regardless of the image angle of view and

distance. These metrics also set the baseline for the food

segmentation and recognition tasks on this dataset.

Table 2: Quantitative results using AP measures

Dataset mAP (%) APs0 (%) AP75 (%)
Fixed 69.4 90.4 85.7
Free 63.2 83.7 79.6
Full 64.7 85.1 79.1




4.2 Depth Image Prediction

In this section, we evaluate the performance of the newly
introduced depth net module. Fig. 5 illustrates three examples of
the input image, the ground truth depth map and the depth map
predicted by our algorithm. Good matches between the ground
truth and the predicted depth maps can be observed,
demonstrating the viability of attaining depth image only from a
single color input.

The performance of the proposed depth net module is further
evaluated based on both Mean Absolute Distance (MAD) and
Absolute Relative Difference (ARD) metrics, with quantified
comparison to the state-of-the-art which uses the same dataset
[26]. In such a comparison, only the pixels inside the plate are
evaluated.

The results are reported in Table 3, showing that the proposed
approach completely outperforms the conventional method in
terms of both MAD and ARD, with the cases of both ‘free set’ and
“full set’.

4.3 Volume Estimation

In this section, the performance of volume estimation module is
evaluated and compared to a conventional approach based on 3D
reconstruction [10, 26]. The evaluation metric we use is average
percentage error for each food item.

Due to the intrinsically distinct mechanisms between our
method and the 3D reconstruction, the experimental conditions
must be set for each separately. Whilst the proposed module
requires only one RGB image as input, the 3D reconstruction
method demands at least two images taken from different angle
of views [10, 26]. In addition, in our MTL approach, the volume
estimation relies on the predicted segmentation and depth,
meaning that the performance might be degraded by the quality
of other modules in the network. Nevertheless, the ground-truth
segmentation map is set as the input of 3D reconstruction method
in the experiment.

Input image

Groundtruth depth  Our prediction

Figure 5: Depth prediction result on Madima17
dataset

Table 3: Comparison of depth prediction method

Free set Full set
Method MAD ARD MAD ARD
(mm) (%) (mm) (%)
Proposed 6.75 1.25 5.71 1.13
Method in [26] 8.64 1.76 6.03 1.25

Table 4: Comparison of volume estimation

Food item’s average percentage error

Method Fixed  Free Full Process

(%) (%) (%) time (s)
Proposed 17.5 19.1 19.0 <0.2
3D 22.6 36.1 33.1 5.5
Reconstruction

Table 4 reports the quantitative comparison on the three
datasets described in Section 4.1. It can be observed that the 3D
reconstruction only performs good with ‘fixed set’, implying that
the method has high demand of the image angle of view. While
the proposed module possesses smallest error in all 3 case (even
with ‘fixed dataset’), validating its robustness and high accuracy.
More importantly, the process time of the proposed method is less
than 0.2 s, being 25 times shorter than that taken by conventional
3D reconstruction. It has to be noted that in [26], the 3D
reconstruction approach achieves a volume estimation error in
the order of 13.8% on the fixed set. The difference is mainly due to
the usage of a different evaluation metric. The volume estimation
error in [26] is for each meal, while in the current research, due to
the intrinsic mechanism of our approach, the volume error of each
food item in the meal is calculated. The currently used evaluation
metric is somehow more strict than the one used in [26].

4 CONCLUSIONS

In this paper, we have presented a MTL-based CNN for meal
assessment, which simultaneously addresses food segmentation,
recognition and volume estimation. The method achieved superior
performance compared with state-of-the-art methods on the
Madimal7. The proposed method, by using only one RGB image
as input, achieved: 1) an improved food segmentation -
performance, in terms of Fmin, has been significantly increased by
9% , 2) 3D information of the RGB food image is extracted by
newly designed Depth and Volume nets, achieving more stable
and accurate result comparing with the conventional approach
based on 3D reconstruction; and 3) the computational time of the
entire pipeline is 0.2 s - two orders faster than that for
conventional volume estimation (5 s). Future work includes the
extension of the methods to images with multiple dishes and
databases with food higher diversities in terms of food categories
and images per category.
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