Parcellation-Independent Framework for Analysing Developing Brain Networks Using Reparametrisation

M. D. Schirmer^{a,b}, G. Ball^{a,b}, S.J. Counsell^{a,b}, A.D. Edwards^{a,b}, D. Rueckert^{b,c}, J.V. Hajnal^{a,b}, P. Aljabar^{a,b}

^a Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
 ^b Centre for the Developing Brain, King's College London, UK
 ^c BioMedIA Group, Dept. of Computing, Imperial College London, UK

Abstract

Brain connectivity may be studied with diffusion MR (dMR), tractography and network theory. However, the lack of a standard for parcellating the neonatal brain leads to the use of atlas- and random-based methods, and thus to the unresolved challenge of comparing graphs with varying numbers and an unknown correspondence of nodes. We propose a parcellation-independent multi-scale analysis of network measures and show its potential in describing developmental changes in neonatal serial dMRI data.

Imperial College London

centre for the **developing brai**

Network theory in brains

Divide brain into set of regions

Find connectivity, e.g. diffusion MRI

- Network theory is becoming more prevalent in neuroscience, as it:
- Allows to analyse complex systems
- Finds connections in data
- Defines properties of data points

Preterm and neonatal subjects

- High prematurity rate (worldwide ~ 10%)
- Prematurity linked to adverse developmental outcome (~50%)
- Early intervention and targeted support is desirable

However, no standard set of regions exist for neonates.

- \rightarrow Stochastic parcellation approaches
- Rely on fewer assumptions
- Need to be repeated multiple times for each subject

The challenge of comparing networks...

Varying results depending on number of nodes

Different sets of regions S of the same brain

Same structural connectivity

 \rightarrow

 Network measures are highly dependent on set of regions/parcellation method.

Parcellation scheme	Number of nodes
AAL	70-90
Voxel-based	10 ³ -10 ⁵
Stochastic	Specified number ± variation

Number of regions

As a result, comparing across subjects and across studies is difficult.

Parcellation-independent Framework

Figure: A framework for parcellation-independent multi-scale analysis. Each brain image is parcellated at multiple scales from a coarse (larger regions) to a fine scale. Subsequent estimates of structural networks are based on the subjects' dMRI data. For each network, the fitted models for global network measures over multiple scales, given by

 $m(G) = a * \log(N) + b,$

where m(G) is a network measure taken on graph G, N is the number of nodes and a and b are the model parameters which are used for group comparison.

-

Figure: Box-plots for the model parameters *a* (left; top) and *b* (left; bottom) for each measure at both time points. Values represent the group at each scan, where the subjects of scan one and two were 30.8 ± 1.0 and 41.2 ± 1.2 weeks old, correspondingly.

One and two stars next to the measure name represents P -values of P < 0.01 and P < 0.001, correspondingly.

- + Results independent of specific parcellation
- Hulti-scale analysis,
 circumventing number of nodes
 bias
- Fitting function is parameter of framework

Direct interpretation of results is difficult