
where are the maximal
and minimal principal
stretch components
obtained from eigenvalue
decomposition of the
deformation field gradients
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Aims of this work
• Fast and automated image registration framework for entire thoracic cage
• Modelling plausible lung-specific motion patterns (e.g. sliding motion) without

prior segmentation

Deformable registration
A classic non-linear image registration with a diffusion regularisation [2]:

The diffusion regularisation can be performed as Gaussian smoothing of the
deformation field, and therefore solving the Euler-Lagrange equations can be seen
as an iterative two-step procedure [2]:
1. Find an update:
2. Smooth the estimated deformation field:
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Contributions
• Novel procedure of deformation fields filtering for deformable registration of

lung data based on three basic components: spatial smoothness, local image
intensities and deformation field similarity.

• Significant improvement (p-value<0.05) of registration accuracy (TRE=1.95mm)
compared to the state-of-the-art methods, and comparable registration accuracy
with the approaches that require segmentation for challenging 4D CT data.

• Potentially applicable for other medical image registration problems.
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Challenges of lung registration
• Complex motion of  organs:

o Motion discontinuities in the cavity of  the pleura
o Smooth deformation field inside the lungs

• Various organs/tissue properties:
o Deformable structures
o Rigidity of  chest bones and spine

Discussion and Conclusion
• Bilateral filtering derived from both intensity and deformation field similarity

preserves discontinuity between the lungs and the pleura, while satisfying
smoothness of the deformation field inside lungs.

• Bilateral filter based only on intensities generates several discontinuities inside and
outside the pleural cavity (compare magnitudes of deformation fields depicted by
blue arrows, especially close to the lung boundaries).

• The lower target registration error also correlates with visual inspection of the
estimated deformation fields.

See more: Papież et al. MICCAI 2013, Papież et al. Medical Image Analysis 2014

• spatial smoothness: (classic Demon)

o keep smooth deformation across whole image domain
o does not preserve motion discontinuities (e.g. sliding motion) 

• spatial and intensity smoothness:

o does not allow for smoothing 
when neighbourhood intensity
values are different

o generates several deformation field discontinuities (depended on σr)
• spatial, intensity and deformation smoothness

o satisfies all presented combinations of  local intensity and deformation field 
changes: smoothness inside lung and sliding at lung boundaries.

Adaptive filtering of deformation
• We propose an adaptive filtering approach based on bilateral filtering [1] to

regularise three different aspects of lung motion: spatial smoothness, local
image intensity similarity and local deformation field similarity:
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• The exemplar kernels of typical local intensities and deformation field
combinations are

high value of  σr

low value of  σr

Validation

before registration SSD-based Demons with 
regularisation using spatial

smoothness

NGF-based Demons with 
regularisation using spatial

smoothness

NGF-based Demons with 
regularisation using spatial, intensity 

and deformation smoothness

Intensity Differences for case 5 from Dir-Lab data set

Deformation field magnitudes for case 5 from Dir-Lab data set

Quantification of  sliding motion for case 5 from Dir-Lab data set
To quantify the locations
and level of detected sliding
motion during evaluation of
the presented framework, we
use a sliding motion measure
(proposed in [6]) which
calculates the maximum
shear stretch of the
estimated deformation field:
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