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Talk overview  

The early phase ( Thirion ) 

 

A Pair and Smooth approach ( Cathier ) 

 

Adaptive regularization ( Stefanescu ) 

 

Diffeomorphic  demons ( Vercauteren ) 

 

Extensions and log -demons ( Mansi , Yeo, Vercauteren )  
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The deformable Registration Landscape in 1995  

Optical flow  

Ä Horn and Schunck, Artif. Intell. 17,  1981;  

Ä Aggarwal and Nandhakumar, Proc. IEEE 76: 917ï935,1988;  

Ä Barron et al., 1994. 

 

Linear elastic deformation  

Ä Broit, PhD 1981. 

Ä Bajcsy and Kovacic CVGIP 46, 1989 

Ä Gee, Reivich, Bajcsy, J. Comp. Assis.Tom. 17, 1993. 
 

Fluid (images & surface)  

Ä Christensen, Rabbitt, Miller, Phys. Med. Biol. 39, 1994.  

Ä Christensen, Rabbitt, Miller.IEEE Trans. Im. Proc. 5(10), 1996. 

Ä Thompson and Toga, IEEE TMI 15(4), 1996. 
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Mechanical deformations  

 

T is a deformation endoded  by its displacement vector 

field:  )()( iiii xuxxTx +=:

ä +-= 2))(()(( xuxJxIC

)())()((),( uxJuxJxIuxF +Ð+--= (1) 

Similarity measure is the SSD  

The differential of this energy is considered as a force:  
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Ä Or as a viscous fluid (Navier-Stokes, Viscosity Coef.) 

Mechanical deformations  

The force F is applied to the image considered  

Ä Either as a linear elastic material (Lamé Coef.) 

Fvdivv =Ð++Ð ))(()(2 lmm

vuv
t

u
 )( Ð-=

µ

µ

Fudivu =Ð++Ð ))(()(2 lmm (2) 

(3) 

(4) 

 

Equations ( 2) and (3) are iteratively solved with F computed by ( 1).  

u is computed by integrating equation ( 4). 
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Difficulties  

 

Ä Differential equations are costly to solve  

Ä Regularity of T? 

Ä Small time steps, many iterations  

Ä Very high computation time... 
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Demon  

Å Computer Science  

A program or process that sits idly in the background until it is invoked to perform 

its task. 

Å A person who is part mortal and part god  

Demigod, deity, divinity, god, immortal - any supernatural being worshipped as 

controlling some part of the world or some aspect of life or who is the 

personification of a force  

Å Maxell's demon  

An imaginary creature who is able to sort hot molecules from cold 

molecules without expending energy, thus bringing about a general decrease in 

entropy and violating the second law of thermodynamics. 



Demonsô algorithm (MRCAS 95, CVPR96, Media98) 

Patient 1 Patient 2 
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Ä T0= Identity 

 

Ä Correction field 

 

Ä Regularization by Gaussian filtering  
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Demonsô algorithm (MRCAS 95, CVPR96, Media98) 

J.P. Thirion: Image Matching as a diffusion process: an analogy with Maxwellôs demons.  

Medical Image Analysis 2(3), 242-260, 1998. 
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Demonsô algorithm (MRCAS 95, CVPR96, Media98) 

R. Kikinis 

Harvard Medical School 
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Unbiased Atlases: Guimond 1999 

11 

Guimond, Meunier, Thirion. Average Brain Models: A Convergence Study. CVIU 77, 1999 

Ä Guimond 2001: VTK implementation (later used for ITK) 
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Intensity -based deformable registration  

 

Demons algorithm: why does it work?  

 

Ä + Fast, efficient  

 

Ä -  Do not minimize an energy 

¸ Difficult to analyze 

¸ Convergence? 

¸ Why does that work? 

¸ How to change the similarity measure? 
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Talk overview  

The early phase ( Thirion ) 

 

A Pair and Smooth approach ( Cathier ) 

 

Adaptive regularization ( Stefanescu ) 
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Extensions and log -demons ( Mansi , Yeo, Vercauteren )  
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PASHA: Pair -And -Smooth,  

Hybrid energy based Algorithm  

¸ SSD : measures the similarity of intensities 

¸ Reg : regularization energy (quadratic) 

¸ sx , si : smoothing and noise parameters  

¸ C : correspondences between points (vectors field) 

¸ T : transformation (regularized vector field)  
 

Ä Correspondences (matches) as an auxiliary variable 

P. Cachier E. Bardinet, E. Dormont, X. Pennec and N. A.: Iconic Feature Based 

 Nonrigid Registration: the PASHA Algorithm, Comp. Vision and Image Understanding  

(CVIU), Special Issue on Non Rigid Registration, 89 (2-3), 272-298, 2003. 
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Alternated minimization  
 

Ä Minimization with respect to C : 

¸ Find matches between points by optimizing ES + in the 

neighborhood of T 

¸ Gradient descent (1st, 2bd order, e.g. Gauss-Newton) 
 

Ä Minimization with respect to T : 

¸ Find a smooth transformation that approximates C 

¸ Quadratic energy Ý convolution 
 

Ä Interest: fast computation 

)(Reg||||),,(),( 211
22 TTCCJISSDTCE
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PASHA: Pair -And -Smooth,  

Hybrid energy based Algorithm  



Gauss -Newton optimization of the correspondences  

Newton optimization  

Ä Second order Taylor expansion of E(C) 

Ä Hessian matrix can be null or negative  
 

Gauss -Newton  

Ä 1st order Taylor expansion of error 

 
 

Ä Solve approximated SSD Criterion around C=T 
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Gauss -Newton optimization of the correspondences  

Exact solution of the quadratic approximation of the SSD  

Ä Solve  

 

Ä By inversion lemma:  

 

Ä Local estimation of intensity variance: 

Ä Assuming isotropic voxel size:  
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Important Practical Remark  

Ä Norm of update is bounded by construction 

 

 

 

Ä Update is diffeomorphic by tri-linear interpolation! 
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Efficient Regularization  

Quadratic regularizer  

 

Euler Lagrange optimization of  

 

 
 

Solution: Gaussian smooting  

 

 
 

Extension to a family of quadratic filters  
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regularization. J. of Math. Imaging and Vision, 20(3):251-265, May 2004. 
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Å Pennec, Cachier, Ayache. Understanding the ``Demon's Algorithm'': 3D Non-Rigid 

registration by Gradient Descent. MICCAI 1999. 
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Mixed Elastic / Fluid Regularization  

 

 

 

 

Ä Result is still obtained by convolution:  

 

            Tn =(1-w). K*Cn + w.(Tn + K*(Cn -Tn-1)) 
 

Ä Advantages:  

¸ Mixes fluid and elastic  

¸ handles large displacements 

2||||),,(),( nnnSnn TCCJIETCE -+= s

[ ])(Reg)1()(Reg. 1 nnn TTT wwsl -+-+ -)(Reg. nTsl+

P. Cachier N. A., Isotropic Energies, Filters and Splines for Vector Field Regulatization,  

J. of Mathematical Imaging and Vision, 20: 251-265, 2004 
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The Demons/PASHA Framework  

Efficient energy minimization  

)(Reg )(Reg ||||),,(),,( 2 TTTCCJIETTCE S
## mls ++-+= ñ

Alternate Minimization  

Ä on C, Correspondance Field (image forces) 

Gauss-Newton gradient descent: normalized optical flow 

Ä on T,  Deformation Field (regularization) 

Gaussian convolution 

 

similarity  Auxiliary  Elastic + Fluid Regularity  

ÅP. Cachier E. Bardinet, E. Dormont, X. Pennec and N. A.: Iconic Feature Based Nonrigid Registration: 

the PASHA Algorithm, Comp. Vision and Image Understanding (CVIU), 89 (2-3), 272-298, 2003. 
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Features - Intensity -Semantics  

JF. Mangin, D. Rivière, SHFJ-CEA 

ARC BrainVar: CEA-Asclepios--Salpêtrière-Visages 
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Inter -subject registration  

Add geometric constraints 

Ä Correspondences C2 between sulci 

Ä Registration energy becomes 

 

 

 

Ä Algorithm in 3 steps: 

¸ Min. w.r.t. C1 by gradient descent 

¸ Min. w.r.t. C2 by nearest neighbor search 

¸ Min. w.r.t. T : explicit solution (convolution + spline) 

2

1121 ||||.),,(),,( TCCJISTCCE -+= s
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[ P. Cachier et al, MICCAI 2001 ] 
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Results with 5 subjects  

 

Affine Initialization Intensity only 

P. Cachier, J.-F. Mangin, X. Pennec, D. Rivière, D. Papadopoulos, J. Régis, N. A. 

Multisubject Non-Rigid Registration of Brain MRI using Intensity and Geometric Features.  

MICCAI'01, LNCS vol 2208, 734-742, 2001. 

Intensity + Features Affine Initialization Intensity only Intensity + Features 
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Towards more functional registration algorithms 

(PhD Radu Stefanescu , 2002-2005) 

 

Ä Adapt regularization with respect to the tissues 

¸ Non stationary smoothing simulating elastic/fluid 

 

Ä Correspondences are fuzzy or less reliable at certain places  

¸ Pathologies, homogeneous intensity areas 

¸ Register only certain areas, interpolate the remaining 

¸ Choice of interest points: selective registration 

 

Ä Fast parallel resolution (1-5 min) 

¸ High Performance Computing: PC cluster  
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Revisiting Regularization  

 

 

Modulate  regularization as a function of  

Ä 1- local variability (statistics on anatomy) 

Ä 2- local information (presence of texture/edges)  
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R. Stefanescu, X. Pennec , N. A., Grid Powered Nonlinear Image Registration with Locally 

Adaptive Regularization, Medical Image Analysis, Sept 2004 (also MICCAIô03) 
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Inhomogeneous Regularization Implementation  

 

 

Modulate  regularization into non -stationary heat equation  

Ä No more Gaussian smoothing 

Ä Use 1st order gradient descent 

 

 

 

Ä Coupled PDEs with Gaussian convolutions 

¸ Cahill, Noble, Hawkes, MICCAI 2009 
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R. Stefanescu, X. Pennec , N. A., Grid Powered Nonlinear Image Registration with Locally 

Adaptive Regularization, Medical Image Analysis, Sept 2004 (also MICCAIô03) 
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Non Stationary Elastic Regularization  

))(( IdTDdiv
t

T
-Ð=

µ

µ

Diffusion or stiffness tensor 

 

Å Encodes a priori variability 

Å Image and application dependent 

Å Scalar or tensor (directional) 
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Non Stationary Elastic Regularization  

))(( IdTDdiv
t

T
-Ð=

µ

µ

Inter-subject brain 

registration: 

Source image 0,01 

0,9 

)()( whitePgreyPD +=

Diffusion or stiffness tensor 
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Non Stationary Fluid Regularization  

i
i uk
t

u
D-=

µ

µ
)1(

Confidence in the correction field 
 

Å k ~ 1 for edges  

   (driving forces) 
 

Å k ~ 0 for uniform regions  

   (interpolation) 

 
Å Used to model pathologies (e.g. tumors) 

0,05 

0,65 

Inspired from non-stationary 

image diffusion 

Å Weickert 1997, 2000 

Å Solved using AOS scheme 
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Performance issues: no closed -form solution!  

Parallel implementation  

Ä Semi-implicit AOS scheme 

Ä Parallelization using Thomas algorithm 
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Images 256 x 256 x 60 : 

3 minutes 30 (in 2005) Ideal linear acceleration 

Observed acceleration 
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Inter -subject registration  
Affine transformation  

Correct size and position but high remaining variability in cortex and deep structures 

MR T1 Images  

256x256x120 voxels 

Atlas to patient registration 

for radiotherapy planning 
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Inter -subject registration  
Fluid regularization  

Very good image correspondence But anatomically meaningless deformation 
Jacobian [1/50;50] 
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