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Abstract—Image Forensics has already achieved great results
for the source camera identification task on images. Standard
approaches for data coming from Social Network Platforms
cannot be applied due to different processes involved (e.g., scaling,
compression, etc.). Over 1 billion images are shared each day
on the Internet and obtaining information about their history
from the moment they were acquired could be exploited for
investigation purposes. In this paper, a classification engine for
the reconstruction of the history of an image, is presented.
Specifically, exploiting K-NN and decision trees classifiers and a-
priori knowledge acquired through image analysis, we propose an
automatic approach that can understand which Social Network
Platform has processed an image and the software application
used to perform the image upload. The engine makes use of
proper alterations introduced by each platform as features.
Results, in terms of global accuracy on a dataset of 2720 images,
confirm the effectiveness of the proposed strategy.

Index Terms—Social networks, Image Forensics, JPEG, Digital
Ballistics.

I. INTRODUCTION

Image Forensics traditionally refers to a number of different
tasks on digital images aiming at producing evidence on the
authenticity and integrity of data (e.g., forgery detection) and
on the identification of the acquisition device (camera identifi-
cation) [1],[2]. Digital images are continuously altered starting
from the moment they were acquired. Most of the time, these
alterations are made by users with precise malicious intents.
Typical tamperings are the removal or the insertion of an object
in an image, the cropping of an undesired portion of a picture,
or the application of particular filters to modify or mask
sensible parts (e.g., faces in pedo-pornographic photos). When
the tampering is not clearly visible, the problem of detecting it
becomes obviously challenging. To solve the forgery detection
task, some approaches stand above the others: a group of them
looks at the structure of the file (e.g., JPEG blocking artifacts
analysis [3], [4], hash functions [5], JPEG headers analysis
[6], thumbnails [7] and EXIF analysis [8], etc.); others try to
identify the device that acquired the image by making use of
PRNU patterns ([9],[10]), or focus on statistical analysis of
the DCT coefficients ([11], [12], [13]). A voting approach has
been used for the same purpose in [5]. Another important task
for Image Forensics is finding the camera device that acquired
the image. Some in-depth studies ([14] [15]) showed that it is
possible to coarsely solve the camera identification task, using
the DCT coefficients as a feature. All these works make clear

the importance of the JPEG pipeline in retrieving information
about the history of an image.

Nowadays Social Networks allow their users to upload and
share large amounts of images: just on Facebook about 1
billion images are shared every day. What happens when a
picture is shared on a social platform? How does the upload
process affect the JPEG elements of the image? A Social
Network is yet but another piece of software that alters images
for bandwidth, storage and layout reasons. These alterations
have been proved to make state-of-the-art approaches for
camera identification less precise and reliable. Recent studies
([16],[17]) have shown that, although the platform heavily
modifies an image, this processing leaves a sort of finger-
print on the image itself. This evidence can be exploited to
understand if the image has been actually uploaded to the
Facebook platform. State of the art studies, regarding Social
Platforms, focus on the analysis of alterations on images and
do not propose a method to solve the image ballistics task.
Moreover, they focus on too few Social Network platforms
making their works not general enough. Hence, enlarging
the analysis to further Social Network Services (SNSs), the
reconstruction of the history of an image becomes a difficult
task. To understand how SNSs process images, a dataset of
images from different camera devices was collected, under
controlled conditions. We selected ten SNSs through which
we processed the collected images by mean of an upload
and download process. By doing this, a dataset of images
has been obtained, in order to identify any alterations on
JPEG elements. The main discovery of our study was that
alterations observed are platform dependent (server-side) but
also related to the application carrying out the upload (client-
side). This evidence can be fundamental for investigation
purposes to understand not only the provenience of an image,
but also if it has been uploaded from a given device (e.g.,
Android, iOS). All the observed alterations allowed to build
an automatic classifier, based on two K-NN classifiers and
a decision tree fitted on the built dataset. Starting from an
input image, the proposed approach can predict the SNS that
processed the image and the client application through which
the image has been uploaded. The remainder of the paper is
structured as follows: in Sec. II, we describe how the dataset
has been built, which social platforms have been considered
and what kind of upload methods have been used; in Sec.
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III, an in-depth analysis on dataset images is reported in
order to find alterations that can be coded into a fingerprint
for a SNS processing; in Sec. IV, our approach for image
ballistics on social image data is presented with the obtained
classification results. Finally, conclusions and reasoning about
possible future works on the topic are discussed.

II. A DATASET OF SOCIAL IMAGERY

The alterations introduced on images by SNS can be
thought as a unique fingerprint left by the SNS. The aim
of our study is to discover those fingerprints by analyz-
ing the behavior of the most popular SNSs that allow im-
age sharing. Hence, 10 platforms have been selected. First
of all, Facebook (http://www.facebook.com) and Google+
(http://plus.google.com) were taken into account as being the
two most popular platforms where users can share their sta-
tuses and multimedia content to a network of friends. Twitter
(http://www.twitter.com) and Tumblr (http://www.tumblr.com)
were considered as being representative of the micro-blogging
concept. We included also Flickr (https://www.flickr.com) and
Instagram (https://www.instagram.com) as platforms focused
on sharing high quality artistic photos with capabilities of
image editing and filtering. Imgur (http://www.imgur.com)
and Tinypic (htto://www.tinypic.com) were also taken into
consideration even if they are not properly SNSs but are very
popular platforms for image sharing: users usually link images
hosted on them from forums and web sites all over the Internet.
Finally WhatsApp (http://www.whatsapp.com) and Telegram
(http://www.telegram.org) were also selected as being the two
most popular mobile messaging platforms that, by allowing
users to create chat groups, are another big place for image
sharing on the Internet. Specifically, the last two services are
often involved in forensic investigations.

To discover how SNSs process images, we collected a set of
photos with the camera devices listed in Table I. Images were
acquired representing three different types of scenes: outdoor
scenes with buildings (artificial environment), outdoor scenes
without buildings (natural environment) and indoor scenes.
When taking a picture, we captured two versions: a High
Quality (HQ) photo at the maximum resolution allowed by
the device, and a Low Quality (LQ) photo (see also Table I).
Capturing images in this way, a dataset with a good variability
in terms of contents and resolutions was obtained.

Images collected so far were uploaded to each of the
considered platforms with two different methods: with a
web browser, and with iOS and Android native apps. No
further discrimination is needed for web browsers because
we observed that alterations are not browser-dependent. Each
download was performed by searching for the image file URL
in the HTML code of the page showing the image itself. At
the end of this phase 2400 images were properly collected.

The second upload method was carried out with iOS and
Android native apps of each social platform, except for Tinypic
that do not possess an official app in stores. Moreover, the
upload has been done by choosing images in two ways:
by searching in the gallery for a previously acquired image

(images from local gallery) and by acquiring the image
with the camera app embedded in the app itself (embedded
camera app). After uploading all images as described above,
all of them were downloaded through the ”URL searching
technique” previously described. 320 more images processed
through 8 platforms were thus obtained. All uploads were
performed with default settings.

The overall dataset consists of 2720 images in JPEG format
and it is available at the following web address http://iplab.
dmi.unict.it/DigitalForensics/social image forensics/.

III. DATASET ANALYSIS

The main aim of our work is to find a fingerprint left by
SNSs on JPEG structure elements, after an upload/download
process, in order to build a classifier for image ballistics.
To achieve this goal, all information contained in the JPEG
file specification has been analyzed: image filename, image
size, meta-data and JPEG compression information. We ob-
served that each upload/download process through the consid-
ered SNSs produces different alterations among the above-
mentioned elements that could be taken into account as
fingerprints of the process itself. Details of these alterations
will be described in the following Subsections.

A. Image Filename Alterations

The analysis of the filename of an image and the comparison
with known patterns during an investigation on storage devices
can provide information about the platform from which it
could be downloaded and the date when it was uploaded.
For this reason, we first evaluated if and how each platform
modifies the file name. We observed that all platforms except
Google+ do a rename.

As an example, in Table II the new names for an uploaded
file with name ”IMG 2641.jpg” are reported. The column
”image lookup” describes the presence into the new filename
of an ID useful to reconstruct an URL that points to the web
location where the image file is stored.

Facebook, Flickr, Tumblr and Instagram use the image ID
and the platform public API (e.g., Graph for Facebook) to
build the corresponding URL. Twitter and Imgur allow finding
the image on the respective platform by navigating to the URL:

• https://pbs.twimg.com/media/<IMAGE ID> for Twitter;
• http://imgur.com/<IMAGE ID> for Imgur;

The other platforms do not present an image ID.

B. Image Size Alterations

A stronger evidence than file naming is the resize of the
uploaded images on each platform. A fine-grained test was
performed by using synthetic images derived from our dataset
and resized at different scales.

On most platforms, resizing is applied if and only if the
input image matches certain conditions. This condition is
linked to the length in pixels of the longest side M of the
original image, where M = max(width, height). If M is
greater than a threshold, a resizing algorithm is applied and the
resulting image has its longest size equal to the threshold. In

http://iplab.dmi.unict.it/DigitalForensics/social_image_forensics/
http://iplab.dmi.unict.it/DigitalForensics/social_image_forensics/


TABLE I
DEVICES USED TO CARRY OUT IMAGE COLLECTION. FOR EACH DEVICE THE CORRESPONDING LOW QUALITY (LQ) AND HIGH QUALITY (HQ)

RESOLUTIONS ARE REPORTED.

Model Device Type Low Resolution High Resolution
Canon Eos 650D Dedicated device 720x480 5184x3456
QUMOX SJ4000 Dedicated device 640x480 4032x3024
Sony Powershot A2300 Dedicated device 640x480 4608x3456
Samsung Galaxy Note 3 Neo Android 4 Phone 640x480 3264x2448
HTC Desire 526g Android 5 Phone 640x480 3264x2448
Huawei G Play Mini Android 6 Phone 640x480 4208x3120
iPhone 5 iOS 6 Phone 640x480 2448x3264
iPad mini 2 iOS 8 Pad 640x480 800x600

TABLE II
RENAMING SCHEME FOR AN UPLOADED IMAGE WITH ORIGINAL FILENAME IMG 2641.JPG. THE NEW FILE NAME FOR EACH PLATFORM IS REPORTED

(IMAGE IDS ARE MARKED IN BOLD).

Social Rename (image ID in bold) Image Lookup Other information
Facebook 11008414 746657488782610 8508378989307666639 n.jpg YES Upload resolution
Flickr 26742193671 8a63f10c85 h.jpg YES Download resolution (h=1600)
Tumblr tumblr o3q9ghRCRh1vnf44lo9 1280.jpg YES Download resolution (1280)
Imgur 04 - Dw0KXG2.jpg YES
Twitter CdqCPQ-WAAAzrHI.jpg YES
WhatsApp IMG-20160314-WA0038.jpg NO Receiving Date (2016-03-14)
Tinypic 1zqdirm.jpg NO
Instagram 1689555 169215806798447 744040439 n.jpg YES Upload Resolution
Telegram 422114602 5593965449613038107.jpg NO

TABLE III
ALTERATIONS ON JPEG FILES. THE EXIF COLUMN REPORTS HOW JPEG META-DATA ARE EDITED: MAINTAINED, MODIFIED OR DELETED. THE FILE

SIZE COLUMN REPORTS IF A RESIZE IS APPLIED AND THE CORRESPONDING CONDITIONS. THE JPEG COMPRESSION COLUMN REPORTS IF A NEW JPEG
COMPRESSION IS CARRIED OUT AND THE CORRESPONDING CONDITIONS (IF ANY).

Social EXIF File Size JPEG Compression
Camera Data Other Data Resize Resize Condition Re-Compression Re-Compression Condition

Facebook Delete Delete Yes LQ: M > 960 HQ: M > 2048 Yes Always
Google+ Maintain Maintain/Edit Yes M > 2048 Yes M > 2048

Flickr Delete Maintain/Edit Yes Depends on options Yes Depends on options
Tumblr Maintain Maintain/Edit Yes M > 1280 Yes M > 1280
Imgur Delete Delete No Never Yes Image Size (MB) > 5.45 MB
Twitter Delete Delete Yes M > 2048 Yes Always

whatsApp Delete Delete Yes M > 1600 Yes Always
Tinypic Maintain Maintain/Edit Yes M > 1600 Yes M > 1600

Instagram Delete Delete Yes M > 1080 Yes Always
Telegram Delete Delete Yes M > 2560 Yes Always

Table III, such conditions and the corresponding thresholds for
each platform are reported. Tumblr does not rescale uploaded
images, while in Flickr the threshold is set by the user. When
the images are resized, the longest side will be set to a fixed
value that identifies, in some sense, the platform that made the
operation (see Table III). Let note that, some of the considered
platforms use the same threshold value and it is subject to
changes over time (for example, during our experiments, the
threshold for Twitter changed from 1024 to 2048).

C. Meta-data Alterations

The best evidence to obtain information, for investigation
purposes, are meta-data embedded in JPEG files. These meta-
data are technically known as EXIF and can store information
like the device that acquired an image, the date and time of
acquisition and also the GPS coordinates. For our purposes,
EXIF data were divided into two categories: “camera data”
which contains all those key-valued that allow to identifying

the device that acquired the image and “other data” for every
other information.

In Table III, the results of the analysis on EXIF data are
resumed for each platform. In particular, it is reported if
”camera data” and ”other data” are deleted, maintained or just
edited throughout the processing. Unfortunately, most of the
SNSs delete all meta-data, specifically those related to camera
data.

D. Image JPEG Compression Alterations

The images considered in our dataset are all encoded in
JPEG format, both the original versions and the downloaded
ones. Thus, an analysis on how the SNS processing affects
the JPEG compression has been carried out. We focused
on the Discrete Quantization Tables (DQTs) used for JPEG
compression (extracted by DJPEG: an open source tool part
of libjpeg project [18]).



Fig. 1. Classification scheme for Image Ballistics in the era of Social Network Services. The proposed approach encodes JPEG information from an input
image into a feature vector. The obtained feature vector is evaluated through an Anomaly Detector that filters out images not processed by a SNS. If the
input image is not an anomaly, the feature vector goes through other two classifiers: a SNS Classifier and an Upload Client Classifier. The output of the
SNS Classifier is further processed through a SNS Consistency Test that checks if the features of the input image and the predicted SNS are consistent to
re-compression and resizing conditions. The final output depends on this last stage: if all features are compatible with the classified SNS then the obtained
prediction, joined with upload client prediction, is outputted. Otherwise the consistency test is repeated, for the next most probable predicted SNS, until it is
satisfied or it stalls on the same predicted platform. In this case the overall output will be ”Not Sure”.

Considering how platforms affect DQTs, it is possible to
divide them into two categories:

• Platforms that always re-compress images (Facebook,
Twitter, Telegram, WhatsApp, Instagram);

• Platforms that re-compress images at a given condition
(Google+, Tumblr, Tinypic, Imgur).

The compression follows the same rules we described for
resizing. In fact, a threshold-based evaluation is performed on
the longest image side and, if it is bigger than the threshold,
the image is compressed using a DQT that will be different
from the original one. This is not true for all the considered
platforms; Flickr allows the user to choose the threshold (if
any), while on Imgur the threshold is fixed in terms of size
in MegaBytes; specifically, if the input image size is greater
than 5.45MB, than the re-compression is performed, otherwise
nothing happens (see also Table III).

IV. IMAGE BALLISTICS OF SOCIAL DATA

Starting from the results of the analysis reported in previ-
ous Sections, regarding the alterations on JPEG elements of
processed images, it is possible to assess that such alterations
bring pieces of information about the history of the image but
they could be insufficient, if considered alone, for investigation
purposes. Hence, we represent all the observed alterations
into a set of features to be used as input for an automatic
classifier. The following elements are then embedded into
proper numerical features:

• The DQTs coefficients divided in 64 coefficients for the
Chrominance table and 64 for the Luminance one, which
represent the JPEG compression alterations;

• Image size (width and height in pixels), which brings
information about size alterations;

• Number and typology of EXIF data (key-value couples),
which describes meta-data alterations;

• Number of markers in JPEG files as defined in [19].
The listed features were chosen in order to represent each

kind of alteration described in previous Sections.

The Quality Factor (QF) was not considered among them,
as it was done in [16], for being dependent on DQTs coeffi-
cients and thus not bringing any new useful information. In
particular, QF does not have a unique method to be computed
and this can be be a source of error for classification purposes.

PRNU was also not taken into consideration among our
features, because, as already mentioned, the heavy processing
done on images by SNSs destroys/modifies any information
coming from the sensor which acquired the image.

Given the features listed before and the image dataset de-
scribed so far, a correspondence between features and the SNS
has been established. This is particularly true for platforms
that always operate a re-compression and heavily alter images.
Starting from this correspondence, an automatic classification
approach for image ballistics was built. Given an input image,
the proposed method allows knowing not only from which
platform it comes from, but also which client application was
used to upload the image (browser web application, iOS native
app or Android native app). Moreover, for images uploaded
from iOS and Android native apps, the proposed approach is
able to differentiate between images taken from the camera
application embedded into the native apps or images chosen
through gallery selection. This demonstrates that fingerprints
observable on images are left both by SNSs and the client
applications carrying out the upload.

A. Implementing image ballistics: a classification engine

Given a JPEG image I , our objectives are to define:
1) if there is a compatibility between the non-related JPEG

elements of I (i.e. filename, EXIF data) and the pro-
cessing pipeline of SNSs;

2) if there is a compatibility between the JPEG elements
of I and the processing pipeline of SNSs;

3) which SNS is compatible with the JPEG elements of the
image, with a certain degree of confidence, and what is
the uploading source in terms of operating system (OS)
and application.



We represent each image I as a 44-dimensional vector

v = {w, h, |E|,m, lj , ck}, (1)

where
• w × h is the size in pixels of I;
• E = {key, value} is an associative array containing the

EXIF metadata, thus ‖E‖ is the number of metadata
found in the structure of I;

• m is the number of JPEG markers in I;
• lj , j = 0, . . . , 31 are the first 32 coefficients of the

luminance quantization table;
• ck, k = 0, . . . , 7 are the first 8 coefficients of the chromi-

nance quantization table.
Moreover, we define fn (I) as the filename of the image I .
At the first stage, we consider fn (I) and E. If there

is a matching between fn (I) and the renaming pat-
terns observed in Section III-A, our approach confirms the
compatibility between I and the SNS with the matched
pattern. Also, E is taken into account, looking for the
“Exif.Image.UniqueCameraModel” key. If it is set, then our
system returns that value.

Thus, the whole dataset representation is

V = {v1,v1, . . . ,vN}

where N is the total number of images. In order to train
the SNS and Upload Scenario classifiers, we augment this
representation with the corresponding labels. Thus, the final
representation for a generic image Ii is

li = {vi, snsi, uci, smi}

where snsi is the SNS, uci is the client application and smi

is the image selection method.
Our classifier performs a two-steps analysis. First, we im-

plement an Anomaly Detector to exclude the images that have
not been processed by SNSs, then we run in parallel a K-NN
Classifier and a Decision Tree [20] to asses respectively the
SNS of origin and the uploading scenario (OS + application).

Given the representations vI1 of an image I1 and vI2 of an
image I2, we define the cosine distance between vI1 and vI2

d(v1,v2) =
v1 · v2

|v1||v2|
(2)

as a measure of similarity between I1 and I2. Therefore, it
is possible to build a distance matrix D of size N ×N where
the element dij is equal to the distance between the images
Ii and Ij . We will refer to the r−th row of this matrix as Dr

and to the c−th column as Dc. It is important to note that
∀ Ii, Ij , 0 ≤ d(vi,vj) ≤ 1, and specifically, the more is the
similarity, the more the distance will be closer to 1. Exploiting
this property, we define the Anomaly Detector as

a (vi,D) =

 (vi, i) if
K∑
j=1

dij < T

not processed otherwise

(3)

where T ∈ [0,K] is defined as the Anomaly Threshold. In
other words, since the more two images are similar, the more
their distance will be closer to 1, we make sure that at least
bKc samples in our dataset are similar to the query image
representation. Then, when a (vi,D) = 0, the representation
is far apart the samples, and we can state that probably the
image has not been processed.

The output of a is then used as input by 1-NN (4) and
Decision Tree algorithms [20].

knn (vi, i) = snsj | dij = minDi (4)

dt (vi, i) = (ucj , smj) (5)

where ucj and smj are the leaves obtained following the path
with vi as input. Hence, the classification scheme, shown in
Figure 1, can be formalized as follows

C(vi,D) = knn (a (vi,D))⊕ dt (a (vi,D)) (6)

1-NN algorithm looks for the closest sample in the dataset,
and assigns the same SNS to the query image. A Decision tree
(Eq. 5) builds classification in the form of a tree structure. It
breaks down a dataset into smaller and smaller subsets while
at the same time an associated decision tree is incrementally
developed. The final result is a tree with decision nodes. The
algorithm used for building the decision tree is the ID3 [20]
which employs a top-down, greedy search through the space
of possible branches with no backtracking. ID3 uses Entropy
to construct a decision tree by evaluating v ∈ V .

Finally, the output of the 1-NN Classifier snsj is pro-
cessed through a SNS Consistency Test. Let be S =
{sns1, . . . , snsn} the set of SNSs that operates a re-
compression at the condition max(w, h) > Csnsi where Csnsi

is the conditional threshold for the i−th SNS and w and h as
listed in Table III.

Given that snsj ∈ S, if max(w, h) < Csnsj it is an
anomaly. The test is then repeated for the next most probable
prediction from the SNS Classifier until the corresponding
condition is satisfied or the loop stalls on the same SNS
prediction. In this last case, the result of the classification
is ”not sure”; otherwise, a SNS prediction is reached and
outputted (snsj) with the predicted upload client application
(ucj) and image selection method (smo).

Figure 1 shows a schematic representation of the proposed
classification engine.

B. Classification Results

In this Section, validation results for the proposed approach
are reported to demonstrate its goodness. The anomaly detector
was validated by taking from our dataset 240 random images
that suffered alterations, and 240 images that did not pass
through any alteration. The anomaly detector achieved the best
error rate, equal to 3.37%, with K = 3 and T = 2.90.

The entire approach for image ballistics described in the
previous Section was then tested through a 5-fold cross



Fig. 2. Heatmaps for Confusion Matrices obtained from 5-cross validation
on our dataset. The reported values, coded in heatmap colors, are the average
value between the 5 runs of cross validation. (a) Confusion Matrix for Social
platform Classification, (b) Confusion Matrix for upload method classification.

(a)

(b)

validation test. In Figure 2, confusion matrices reporting the
average value through the 5 runs are shown.

The accuracy obtained for the SNS classification task was
96% with best K equal to 3 while the accuracy value for the
upload client classification task was 97.69% with an accuracy
of 91% for the prediction of image selection method, given
iOS or Android native app as prior.

A different approach, with a cascade of classifiers, was
also tested with each classifier being alternately the predictor
for the other one, but the overall results were slightly worse.
The classification scheme reported in Figure 1 was the best
approach we obtained throughout our tests.

C. Discussion

In our experiments, we observed that, as happens for
different camera devices of the same model [15], different
images, from the same platform, have slightly differences
in DQT coefficients. Hence, the most discriminative features
were chosen among those listed in Section IV. At conference
time more details about this aspect will be presented.

Another consideration is needed about the SNSs fingerprints
described in this work and regarding the fact that all the
alterations observed can change according to software devel-
opment and releases. For these reasons, in order to solve the
task of predicting the SNS that processed an image and the
client carrying out the upload, the proposed automatic and
probabilistic approach is justified for being able to scale and
readapt through time, just by updating the reference dataset.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we presented a dataset for image ballistic and
proposed a classification engine to discover if an image has
been processed by a Social Network Service and, if the answer
is positive, by which SNS among the 10 considered platforms.

The proposed approach performed the task of Image Ballistics
with good accuracy by predicting the SNS that process an
image and the corresponding upload method, with an accuracy
respectively of 96% and 97.69%.

We think that this work can open new perspectives on the
field of Image Forensics: the approach can be upgraded by
considering other formats (e.g., PNG) and new features related
to image contents.
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