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Abstract—In medical field, the term ”immunotherapy” refers
to a form of cancer treatment that uses the ability of body’s
immune system to prevent and destroy cancer cells. In the
last few years, immunotherapy has demonstrated to be a very
effective treatment in fighting cancer diseases. However, im-
munotherapy does not work for every patients and moreover,
certain types of immunotherapy drugs could have side effects.
With this regard, scientific researchers are investigating for
effective ways to select the patients who are more likely to
respond to the treatment. Hence, pre-clinical data confirmed that,
sometimes, the composition of immune system cells infiltrating
the tumor micro-environment may interfere with the efficacy of
immunotherapy treatments. In this work, we developed a 3D
Deep Network with a downstream classifier for selecting and
properly augmenting features from chest-abdomen CT images
toward improving cancer outcome prediction. In our work, we
proposed an effective solution to a specific type of aggressive
bladder cancer, called Metastatic Urothelial Carcinoma (mUC).
Our experiment results achieved high accuracy confirming the
effectiveness of the proposed pipeline.

Index Terms—Spatio-Temporal Data, Deep Convolutional Net-
work, Radiomics.

I. INTRODUCTION

Immunotherapy refers to a treatment that uses the patient’s
own immune system to fight diseases such as cancer [1],
[2]. In medical oncology, immunotherapy has been widely
used in several experimental medical use-cases, in association
with traditional protocols including chemotherapy and radia-
tion therapy. This usage increase due to the very promising
outcomes that the immunotherapy treatment has achieved
in recent years. Malignant cells have the characteristic of
reproducing very quickly at the expense of healthy cells. The
currently adopted immunotherapic approaches can act in two
directions: (1) By stimulating the body’s immune system to
make it more effective in recognizing and destroying cancer
cells; (2) By introducing molecules - such as proteins - into
the immune system to enhance the defense system, making it
more ”intelligent” in detecting and eliminating cancer cells.
In the last few years, the scientific community has focused
its research efforts on delivering innovative strategies by ana-
lyzing visual features from medical images. Large collections

of medical images applied to train deep neural networks have
gradually become a very promising topic both in the research
community and in the medical industry. However, the image
analysis process is often time-consuming and require expert
evaluations. Even simple tasks, such as image classification or
segmentation requires a lot of efforts from expert clinicians.
Hence, there is a strong need to develop automatic solutions
for medical image analysis, especially in the medical oncology
field. These considerations underlying the effort to study and
develop new efficient algorithms in order to predict cancer
disease by analyzing medical images. More recently, the
growing interest in deep learning technologies has led to
the development of several approaches to accomplish these
tasks. Hence, we propose the usage of a Deep Learning
pipeline consisting of a Densely Connected Network with
Non-Local Self Attention module suitable to perform advanced
image classification. Recently, Deep Learning approaches have
achieved outstanding performances in 2D medical image anal-
ysis task. However, researchers have recently investigated how
to apply Deep Learning methods effectively in order to process
2D or 3D information from sliced images. With this regard,
Densely Connected Networks have been proposed to process
medical images, considering their apparent ability, compared
with respecto to the other neural backbones, with volumetric
data in medical imaging. In fact, the main benefit of 3D CNNs
is their improved flow of information and gradients throughout
the network, which makes them easy to train. Using these
technologies, we developed an effective pipeline to improve
the process of predicting immunotherapy treatment outcome
from CT-scan, making, in this way, the healthcare system more
efficient. The remainder of the paper is structured as follows.
In Section II we present the related works. In Section III
we describe the proposed pipeline while in Section IV we
report the experiments we made for validating the proposed
approach. Finally, in section V we report the conclusions.

II. RELATED WORKS

Several Deep Learning based solutions have been proposed
in the scientific community, dealing with the development

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

20
21

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e 
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-6
65

4-
39

00
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IJC
N

N
52

38
7.

20
21

.9
53

40
78

Authorized licensed use limited to: University of Catania. Downloaded on June 13,2023 at 13:27:51 UTC from IEEE Xplore.  Restrictions apply. 



of automatic pipelines for the medical treatment outcome
assessment [3]–[5]. In [3], the authors evaluated the per-
formance of the most effective Machine Learning (ML) al-
gorithms to predict the mortality after a radical cystectomy
in a large dataset of bladder cancer patients. The results
have shown that the Regularized Extreme Learning Machine
outperformed other methods in terms of accuracy. Different
solutions for cancer image-lesion segmentation enabling 2D
or 3D convolution networks have been proposed in scientific
literature [5]–[9]. The performance indicators related to the
segmentation stage of metastatic lesions from CT imaging are
significant and promising, although it refers to lesions of the
same type (visceral or lymphatic) [5]–[9]. Further interesting
deep pipelines for estimating the response to such cancer
treatments based on quantitative data analysis can be found
in [10]–[12]. The Deep Learning architecture proposed in
[10] is a modified version of the AlexNet backbone [11].
The authors applied the proposed deep architecture to learn
visual features from segmented CT slices in order to assess the
chemotherapic treatment. The experimental results pointed out
the effectiveness of the proposed deep network on estimating
treatment outcome [10]. In [13], the authors introduced a novel
deep pipeline for detecting immunotherapy outcomes learning
ad-hoc visual features generated by a stack of encoders. With
an accuracy of 86.05%; Specificity of 89.29%, and Sensitivity
of 80.00% , the proposed pipeline showed promising results.
Further investigations by the same authors have been reported
in further works [14] and [15]. Through the use of such inno-
vative deep pipelines including self-attention [14] and visual
data augmentation [15] the authors retrieved promising results
regarding to the prediction of the immunotherapy treatment
outcome as confirmed by the performance indexes that will
be later compared in this paper. The pipeline herein described
outperforms the previous proposed solutions confirming the
progress in classification performance.

III. THE PROPOSED PIPELINE: DESCRIPTION

The proposed Deep Learning pipeline is devised to predict
the outcome of the immunotherapy treatment by extracting
discriminating features from CT-scan images. As shown in Fig.
1, the proposed method comprises an innovative 3D Densely
Connected Convolutional Network with a self-attention mech-
anism and a genetic-driven spatio-temporal data augmentation
layer. This study was triggered by the results achieved by
our previous work [14], [15], where a 3D Non-Local Neural
Network was implemented to improve bladder cancer outcome
prediction. In this paper, we demonstrated the correlation be-
tween the patient’s response to immunotherapy treatment and
the augmented hierarchical spatio-temporal features generated
by our designed deep architecture. We conducted our analysis
by only considering the RECIST (ver. 1.1) CT-scan compliant
lesions from CT-scan device imaging software. The Response
Evaluation Criteria in Solid Tumors (RECIST) is a medical
evaluating criteria defined by scientific community to assess
tumor response [16]. Specifically, the RECIST 1.1 guidelines
provide more stringent criteria than previous version regard-

ing lesion measurement, the augmented definition of disease
progression, the selection of bone lesions and cysts as target
lesions, etc. Specialists in medical oncology have followed
the aforementioned criteria in order to define an objective and
robust criterion to classify the patient who presents a disease
progression from the one who instead responds positively to
cancer treatment. During clinical trial, the involved physicians
selected the lesion, i.e. the Region of Interest (ROI) SR(x, y)
with a dimension of M ×N pixels. Then, the segmented CT-
scan RECIST 1.1 cancer lesion SR(x, y) will be processed
by the Genetic-driven Reinforcement Learning block in order
to generate the spatio-temporal Volume of Interest (VOI) of
TD × MD × ND to be fed to the 3D Densely Connected
Network. In this work, we process a set of 32 × 64 × 64
(VOI) discriminat features. In addition, an implicit ”attention”
module is developed in order to identify the visual feature
which represent the most significant parts of the RECIST
1.1 compliant lesion. In particular, we have extended the
proposed 3D convolutional architecture by designing a series
of Non-Local Blocks [17]. These blocks are based on the idea
to capture long-range dependencies at different scales. The
proposed architecture aims to arrange the analyzed problem
of immunotherapy treatment outcome estimation as a classical
binary classification task. With this regard, the proposed
architecture classifies the patients into two different classes:
Class 1, includes patients which shows complete response
(CR) or partial response (PR) or stable disease (SD)) and
Class 2, including the patients who showed disease progression
(PD). As introduced, the described pipeline is schematized in
Fig. 1. The network architecture used in this study consists
of a sequence of 3D dense blocks. The first convolution layer
processes the input volume (VOI) with a size of 32× 64× 64
pixels using a kernel size of 3 × 3 × 3 pixels. The output of
this layer is processed by 6 dense blocks composed by [6,
8, 8, 8, 8, 6] 3D layers respectively, that also has a kernel of
3×3×3 in size. The output is followed by a ReLU non-linear
activation function. Moreover, each dense block is preceded by
[0, 1, 2, 3, 4, 5] Embedded Gaussian Non-Local blocks [17],
respectively. Finally, a transition-down layer with a 2× 2× 2
max pooling completes the block. In short, the input VOI is
processed by the described blocks (both dense and non- local)
generating the feature maps which will gradually decrease
(in dimension) until they becomes a one-dimensional vector
having length of 736× 1. The resulting feature map traverses
three fully connected (FC) layers followed by RELU. The final
layer consists of a fully connected layer which outputs 2 values
to a softmax layer that converts the values to a range from 0
to 1. In fact, the output of the proposed architecture can be
interpreted as the likelihood of an input VOI being classified
into 1 of the 2 categories. In particular, classical negative log-
likelihood have been used as loss function.

In Table 1, we reported the details of the overall architecture.

A. The CT-scanner Image Processing Software Block

In this section, we go through the details of pre-processing
steps for CT images. In the first stage, the radiologists per-
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Fig. 1. The proposed Densely Connected Network with Non-Local Self Attention and Data Augmentation System

TABLE I
THE LAYERS SPECIFICATION OF THE PROPOSED DEEP ARCHITECTURE

Block Output Size Layer(s) Description Layers Numbers
Convolution 32× 16× 64× 64 3× 3× 3 conv. 1

Dense Block 128× 16× 64× 64
Batch Normalization

6ReLU
3× 3× 3 depth-wise conv.
1× 1× 1 point-wise conv.

Transition Layer 128× 8× 32× 32
1× 1× 1 conv. 1

2× 2× 2 maxpool

Dense Block 256× 8× 32× 32 [...] 8

Transition Layer 256× 4× 16× 16
1× 1× 1 conv. 1

2× 2× 2 maxpool

Dense Block 384× 4× 16× 16 [...] 8

Transition Layer 384× 2× 8× 8
1× 1× 1 conv. 1

2× 2× 2 maxpool

Dense Block 512× 2× 8× 8 [...] 8

Transition Layer 512× 1× 4× 4
1× 1× 1 conv. 1

2× 2× 2 maxpool

Dense Block 640× 1× 4× 4 [...] 8

Transition Layer 640× 1× 2× 2
1× 1× 1 conv. 1

2× 2× 2 maxpool

Dense Block 736× 1× 2× 2 [...] 6

Transition Layer 736× 1× 1× 1
1× 1× 1 conv. 1

2× 2× 2 maxpool

Fully Connected 350 FC, ReLU 1

Fully Connected 250 FC, ReLU 1

Fully Connected 250 FC, ReLU 1

Classification 2 FC, Softmax 1

formed a pre-processing step of the CT-scan images turning
off regions of non-interest in order to capture image lesions
according to the required guidelines [14]–[16]. Specifically,
the experts used a proper CT scanner device to create ground
truths referring to the correct immunotherapy treatment out-
comes. To minimize the subjective impact of the physician-
driven manual choice of the visual RECIST 1.1. lesion, the
pipeline validation phase is performed by using the k-fold
cross-validation. Hence, we selected all RECIST 1.1 compliant
lesions from CT-scans of each patient, from time to time.
This procedure ensure that the evaluation of performance is
carried out taking into account each possible setup of the the
physician’s choice of the input CT-scan lesion. The output of
this block is the ROI image SR(x, y).

B. The Spatio-Temporal Data Augmentation Block

In this section, we present the proposed method for generat-
ing high-level spatio-temporal discriminant features. The gen-
erative model consists of an enhanced transient-response 2D

Cellular Non-linear Networks (2D-CNN) [18]. The paradigm
of this enhanced 2D-CNN is capable of performing the spatio-
temporal behavior. In 2D-CNN, the cell denotes the basic unit.
Any cell in a CNN is connected only to its neighbor cells. The
CNN cells can interact directly with each other within a finite
radius [19]. Cells not directly connected together may affect
each other indirectly because of the propagation effects of the
dynamics of CNNs. Specifically, in our proposed transient-
response 2D-CNN every single cell of the system dynamically
evolves from the initial state along the trajectory that converges
-in a time-transient session- to a specific steady-state [15]–
[18], creating a state-controlled template with a transient-
response stage. Formally, we defined the following equations:

C
dxij(t)

dt
= − 1

Rx
xij+

+
∑

C(k,l)∈Nr(i,j)

A1(i, j; k, l)ykl(t)+

+
∑

C(k,l)∈Nr(i,j)

A2(i, j; k, l)ukl(t)+

+
∑

C(k,l)∈Nr(i,j)

A3(i, j; k, l)xkl(t)+

+
∑

C(k,l)∈Nr(i,j)

D1(i, j; k, l)(yij(t), ykl(t))+

+Kb

1 ≤ i ≤M, 1 ≤ j ≤ N

(1)

yij(t) =
1

2
(|xij(t) + 1| − |xij(t)− 1|) (2)

Nr(i, j) = {Cr(k, l); (max(|k − i|, |i− j|) ≤ r)}
(1 ≤ k ≤M, 1 ≤ l ≤ N))

(3)

As reported, we developed a 2D-CNN which takes the
segmented RECIST 1.1 lesion SR(x, y) as input ukl and state
xkl. In Eq. (1)-(3), the Nr(i, j) denotes the neighborhood
of each 2D-CNN cell C(i, j), taking into account a radius
r. The variable yij(t) represents the generated hierarchical
feature. A1(i, j; k, l), A2(i, j; k, l), A3(i, j; k, l), D1(i, j; k, l)
indicates the cloning templates while Kb denotes the bias.
They are randomly initialized for each of the defined 32 setup
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in combination with a 3 × 3 binary mask AB
v

1 (i, j; k, l) and
AB

v

2 (i, j; k, l) for the v − th template matrices Av1(i, j; k, l)
and Av2(i, j; k, l) with v = 1, 2...32. During the training step,
we retro-propagated the temporal dynamics of the overall
loss L(t) to this block, defining the elements of the matri-
ces Av1(i, j; k, l) and Av2(i, j; k, l). The configuration of the
matrices is performed by using the proposed Reinforcement
Learning algorithm. More in detail, we determined the optimal
policy Po that optimize the cumulative discount reward R:

P0 = argmaxP0 E[
∑
t≥0

γtR(·|st, at)|P0] (4)

Where γ denotes a proper discounted coefficient in (0,1). In
order to evaluate the goodness of a state st (specific setup of
the v−th cloning templates Av1(i, j; k, l) and Av2(i, j; k, l)) and
the goodness of a coupled state-action (st, at), we defined the
Value function V P0(st) and the Q-value function QP0(st, at)
respectively:

V P0(st) = E[
∑
t≥0

γtR(.|st)|P0] (5)

QP0(st, at) = E[
∑
t≥0

γtR(.|st, at)|P0 ] (6)

while the reward function is so defined:

R = −(
∂L(Avm(·), Dv

1(·),Kv
b (·), ABv

p (·), Bv, v, t)
∂t

)2

m = 1, 2, 3; p = 1, 2; v = 1, 2, ...32

(7)

where L(·) denotes the loss of the overall pipeline
which depends on the state st (2D-CNN setup: A1(i, j; k, l),
A2(i, j; k, l), A3(i, j; k, l), D1(i, j; k, l) and bias Kb) and the
actions at while the policy P0 is defined by the update of
the AB

v

1 (i, j; k, l) , AB
v

2 (i, j; k, l) and Bv masks. For each
training iteration tγ , a classical Genetic algorithm through
common crossover and mutation operations [20] applied
to the binary mask Bv , selects the v − th feature setup to
modify (among to the 32 defined setup) and always with a
set of crossover and mutation operations, it will change
the binary masks AB

v

1 (i, j; k, l) and AB
v

2 (i, j; k, l) of the
selected v − th setup thus identifying the coefficient of the
cloning templates A1(i, j; k, l), A2(i, j; k, l) which will be
updated by means of a random update (action at) generating
a new setup of spatio-temporal (time tγ) cloning templates
Av1(i, j; k, l, tγ), Av2(i, j; k, l, tγ). The others templates and
bias remain unchanged with respect to initial configuration.
Only setup that produce a decrease in the overall loss dynamic
will be accepted while the others will be discarded. At the
end of the training phase, for each RECIST 1.1 lesions, we
have obtained a 32× 64× 64 VOI which minimize the Loss
of the whole pipeline. The flowchart of the proposed Data
Augmentation block is reported in the following Fig. 2.

C. Dense Blocks

The developed architecture is a 3D Densely Connected Con-
volutional Neural Network (3D-DCNN) embedding separable
convolution layers (both depth-wise and point-wise) [14]. In
our pipeline, we adopted separable convolutions in order to
yield effective results with fewer computational cost. The
dense block consists of a sequence of dense layers, followed
by a batch normalization layer and a 3D convolutional layer
with a kernel of 3× 3× 3 in size. Finally, a ReLU activation
function concludes the block. Each dense block is followed by
a transition down layer, aiming to half feature map dimension,
and composed by a convolutional layer with kernel size of
1×1×1 followed by a max pooling layer of kernel 2×2×2.
Finally, the output of dense blocks is then passed to Non-Local
Blocks.

D. Self-Attention through Non-Local Blocks

Non-local blocks have been recently introduced [17], as a
very promising approach for capturing space-time long-range
dependencies and correlation on feature maps, resulting in a
sort of “self-attention” mechanism. Self-attention through non-
local blocks aims to enforce the model to extract correlation
among feature maps by weighting the averaged sum of the
features at all possible positions in the generated feature maps
[17]. In our pipeline, non-local blocks operate on almost each
convolution layer to extract feature in dependencies at multiple
hierarchical levels through an holistic morphological modeling
of the input RECIST 1.1 CT-scan image-lesion. Formally,
given a generic deep network as well as a general Non-
Local Block input data x (feature map), the employed non-
local operation computes the corresponding response yi (of
the given Deep block) at a i location in the input data as a
weighted sum of the input data at all positions j 6= i:

yi =
1

ψ(x)

∑
∀j

ζ(xi, xj)β(xj) (8)

where ζ(·) denotes a pairwise potential which describes the
affinity or relationship between data positions at index i and j,
respectively. β(·) is a unary potential modulating ζ according
to input data. The sum is then normalized by a factor ψ(x).
The parameters of potentials ζ(·) are learned during model’s
training and defined as follows:

ζ(xi, xj) = eΘ′(xi)
T Φ(xj) (9)

Where Θ′ and Φ are two linear transformations of the input
data x with learnable weights WΘ′ and WΦ.

Θ′(xi) = WΘ′xi

Φ(xj) = WΦxj

β(xj) = Wβxj

(10)

For the β(·) function, we defined a common linear embed-
ding (classical 1x1x1 convolution) with learnable weights Wβ .
The normalization function ψ is:
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Fig. 2. The proposed Spatio-Temporal Data Augmentation Pipeline

ψ (x) =
∑
∀j

ζ(xi, xj) (11)

In Eqs (9)-(11) an Embedded Gaussian setup is reported
[17]. The selection of the Embedded Gaussian is specifically
recommended for 3D applications. The so processed features
will be fed into the final block of the 3D-DCNN composed
by a stack of fully connected with SoftMax for final binary
classification.

E. The Classification layer

After processing the 32×64×64 VOI, the network generates
a 736 × 1 one-dimension visual embedding. The vector is
fed into a stack of Fully Connected (FC) layers, comprising
3 FC layers with 350, 250, and 250, respectively. Finally, a
Softmax layer is applied to compute the binary classification
of the processed RECIST 1.1 compliant CT-scan lesion. The
flowchart of the proposed pipeline is shown in Fig. 1.

F. Dataset: Recruitment and data pre-processing

We evaluate all the models on a dataset consisting of 106
chest-abdomen CT scans from patients affected by bladder
cancer. More in detail, 43 target lesions of the 106 recruited
is associated to a complete/partial response or a disease stabi-
lization following immunotherapy treatment (CR: Complete
response / PR: Partial Response / SD: Stable Disease as
Class 1), while 63 lesions is associated to experienced disease
progression despite anti-PD-L1 drug treatment (PD: progres-
sive disease as Class 2). In addition, the dataset comprises
subjects who are under the age of 60 (30%), male patients
(91%), female patients (9%), subjects who have lymph node
metastases (33%), subject who have various visceral metastatic
lesions (67%). Patients enrolled in this study underwent CT
examination after an histologically confirmation of bladder
cancer disease. All procedures were carried out under the
supervision of the clinicians and after receiving the patient’s

informed consent. This clinical study was performed under
IRB “Catania 1 Ethical Committee” Nr. D4191C00068 and
MO29983 approval. In addition, each enrolled participants
were treated with a PD-L1 immunotherapy agent in the
second-line setting. After the clinical trial, the experts have
analyzed the target lesions from CT examinations images by
using a General Electric multi-slice (64 slices) device with
slice thickness of 2.5 mm; working current in the range 10 –
700 mA; working voltage: 120 kV ; pitch: 0.98. For training
and validation, we used 76 target lesions subdivided into 28
belonging to Class 1 and 48 of Class 2. For the test set, we
used a subset of 30 CT images (15 of Class 1 and 15 of
Class 2). For each lesion, an augmented 32 × 64 × 64 VOI
was generated trough the Genetic-like Reinforment Learning
block. To perform training, we defined a mini-batch size of
10, an initial learning rate of 3e−4, a number of epochs equal
to 900 and the stochastic gradient descent with momentum
(SGDM) algorithm as learning optimizer. As introduced, we
performed k-fold cross-validation in order to provide a robust
testing session. The evaluation was conducted on a workstation
equipped with an Intel 16-Cores and NVIDIA GeForce RTX
2080 GPU.

IV. EXPERIMENTAL RESULTS

We compared our proposed model with different architec-
tures. Table II reports the testing results in terms of accuracy,
sensitivity and specificity, of our proposed method in com-
parison with other similar approaches. As expected, referring
only to classical deep architecture, Table II highlights the
out-performance of 3D architectures compared to 2D ones,
confirming 3D ResNet-101 as the most performing among
those tested (Accuracy: 0, 857 ± 0, 0487 - Sensitivity: 0, 847
± 0, 044 - Specificity: 0, 867 ± 0, 065). An interesting result
that deserves to be highlighted is related to the use of aug-
mentation techniques that would seem to significantly increase
the performance of the classification architectures. Specifically,
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TABLE II
EXPERIMENTAL PERFORMANCE BENCHMARKING (MEAN ± STANDARD

DEVIATION (STD))

Model
Metrics

Accuracy Sensitivity Specificity

Mean STD Mean STD Mean STD
2D DenseNet-201 0, 830 0, 036 0, 847 0, 069 0, 813 0, 067

2D ResNet-101 0, 827 0, 040 0, 817 0, 048 0, 837 0, 070

2D VGG-19 0, 775 0, 071 0, 827 0, 082 0, 723 0, 115

2D ResNet-18 + Aug. [15] 0, 918 0, 0439 0, 917 0, 064 0, 921 0, 045

3D Resnet-101 0, 857 0, 0487 0, 847 0, 044 0, 867 0, 065

3D DenseNet-201 0, 840 0, 047 0, 833 0, 051 0, 847 0, 065

3D DenseNet-NLB [14] 0, 913 0, 035 0, 923 0, 062 0, 904 0, 033

Proposed 0,936 0,040 0,936 0,059 0,937 0,049

Proposed w/o NLB 0, 913 0, 033 0, 916 0, 047 0, 911 0, 048

Proposed w/o Gen-driv RL 0, 901 0, 038 0, 903 0, 050 0, 900 0, 550

the data augmentation pipeline developed by the authors in
[15] allows to bring the performance of the ResNet-18-based
deep backbone to higher values (Accuracy: 0, 918 ± 0, 043
- Sensitivity: 0, 917 ± 0, 064 - Specificity: 0, 921 ± 0, 045)
even than 3D architectures, confirming that the use of these
methodologies allows to generate features more discriminating
than those obtained from the simple space-temporal analysis.
Similar analysis are valid for self-attention techniques which,
as is evident from the results of the 3D-DenseNet with Non-
Local Block reported in Table II and described in [14], allow to
increase the overall performance of the deep classifiers thanks
to a greater correlation between the space-time dependencies
of the features. Therefore, the high performance of our pro-
posed pipeline (Accuracy: 0, 936 ± 0, 040 - Sensitivity: 0, 936
± 0, 059 - Specificity: 0, 937 ± 0, 049) appears in line with
the scientific evidence documented so far, combining in the
same model both self-attention and augmentation techniques.
The significantly degraded performances obtained by the same
proposed architecture without Non-Local Block (w/o NLB) or
Genetic-driven Reinforcement Learning block (w/o Gen-driv
RL) further confirm the claims described so far.

V. CONCLUSION

In this study, we designed a radiomics pipeline based on in-
novative Deep Learning backbone which shown very promsing
results in predicting the outcomes of bladder cancer affected
patients treated with immunotherapy. In this context, we built
a DenseNet embedding a Self Attention module to process
the segmented and augmented cancer image-lesions in order to
correlated the cancer imaging with the effectiveness treatment.
More in details, we observed that our proposed pipeline
enables to non-invasively predict immunotherapy treatment
response trough chest-abdomen CT-scan imaging of bladder
cancer diagnosed patients, providing remarkable results in
terms of accuracy, sensitivity and specificity. Compared to
other models, the delivered DenseNet with Self-Attention

mechanism has better performance in classification task.
Moreover, the developed Spatio-Temporal Data Augmentation
pipeline prevent over-fitting issues and improve the overall
generalization ability of the implemented architecture. The
developed pipeline was designed for the embedded STA1295
platform with OpenCV and YOCTO Linux O.S. [15]. We are
working on a validation of the proposed methodology in a
large, randomized and multicenter clinical trial that allows us
to test our approach on a more significant medical dataset.
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