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ABSTRACT

In the last few years, medical researchers have investigated
promising approaches for cancer treatment, leading to a ma-
jor interest in the immunotherapeutic approach. The target
of immunotherapy is to boost a subject’s immune system in
order to fight cancer. However, scientific studies confirmed
that not all patients have a positive response to immunother-
apy treatment. Medical research has long been engaged in
the search for predictive immunotherapeutic-response bio-
markers. Based on these considerations, we developed a
non-invasive advanced pipeline with a downstream 3D deep
classifier with attention and reinforcement learning for early
prediction of patients responsive to immunotherapeutic treat-
ment from related chest-abdomen CT-scan imaging. We
have tested the proposed pipeline within a clinical trial that
recruited patients with metastatic bladder cancer. Our experi-
ment results achieved accuracy close to 93%.

Index Terms— Deep Convolutional Network, Immunother-
apy, Imaging.

1. INTRODUCTION

Immunotherapy acts on the body’s immune system to stimu-
late the destruction of cancer cells [1, 2]. The immune system
is the main subject body’s natural defense barrier for infection
and correlated disease. However, the body defense mecha-
nism is not always effective against cancer cells because they
are able to implement a whole series of escape strategies[1, 2].
Based on this increasingly in-depth knowledge, researchers
have investigated several strategies based on ”re-educating”
the immune system against the aforementioned cancer escape
strategies. In this contribution, we will focus on the ”Immune
Checkpoint Inhibitors” (ICIs) immunotherapy treatments that
act over the so called PD-L1/PD-1 cell receptors [3]. The ICIs
immunotherapeutic drugs inhibit the action of PD-L1/PD-1

receptors used by cancer cell to prevent T lymphocytes (sub-
ject’s immune system) from destroying tumor cells. We
analyzed this physiological mechanism in the medical use-
case of metastatic bladder cancer [1, 4, 5]. Unfortunately,
despite the growing advances of immunotherapy treatments,
only about 20% - 30% of patients have a positive response
[6, 7]. Therefore, the scientific community has focused its re-
search efforts on delivering innovative predictive biomarkers
of response to immunotherapy treatment [8]. In this study,
we explored the application of an innovative and less invasive
3D deep pipeline with self-attention and data augmentation,
which aims to predict a bladder cancer suffering patient’s
response to immunotherapy treatment from the analysis of
chest-abdomen CT-scan imaging.

2. RELATED WORKS

An extensive research effort (including recent Deep Learn-
ing) has been employed by scientific community for identi-
fying efficient predictive bio-markers of response to cancer
treatments[9, 10, 11]. Garapati et al. [10] applied some of
the most common Machine Learning (ML) algorithms to an-
alyze CT-scan urography of each recruited patient belonging
to a clinical study of 84 subjects. The reported evaluation
confirmed that Support Vector Machine (SVM) achieved im-
pressive results[10]. Other ML methods have been proposed
for bladder cancer disease estimation[11]. Specifically, the
method proposed in [11] described an interesting and effec-
tive (accuracy close to 80 %) approach for predicting can-
cer recurrence and survival in recruited treated patients from
multi-modal data analysis (imaging, surgical findings, etc.).
Further interesting deep pipelines for estimating the response
to such cancer treatments based on quantitative data analysis
have been proposed in [12, 13, 14]. The Deep Learning ar-
chitecture proposed in [12] includes a modified version of the
AlexNet backbone [13] used to learn visual features from seg-
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mented patient CT imaging in order to assess the chemother-
apic treatment outcome. The experimental results pointed out
the effectiveness of the proposed solution [12]. In [15], the
authors introduced a novel deep stack of encoders for pre-
dicting immunotherapy outcomes from visual features based
on CT-scan imaging. With an accuracy of 86.05%; Speci-
ficity of 89.29%, and Sensitivity of 80.00% , the proposed
pipeline showed promising results. Further enhancements of
that deep architecture have been proposed in [16] and [17].
More in detail, through innovative deep pipelines including
self-attention [16] and data augmentation [17] the authors re-
trieved promising results regarding the prediction of the im-
munotherapy treatment outcome as confirmed by the perfor-
mance results that will be later compared in this paper.

3. THE PROPOSED PIPELINE: DESCRIPTION

The flowchart of the proposed pipeline is shown in Fig.
1. We trained a deep architecture to predict the outcome
of the immunotherapy treatment from CT-scan imaging of
the analyzed patients. The network explored in this work
consists of an innovative 3D Densely Connected Convolu-
tional Network embedding self-attention combined with an
innovative genetic-driven reinforcement learning layer able
to generate hierarchical augmented spatio-temporal features
with the target of minimizing the loss function of the overall
pipeline. The use of 3D deep convolutional layers was en-
abled by the results achieved by our previous works [16, 17].
As reported in Fig. 1, the output of the proposed pipeline
is the predicted immunotherapy treatment outcome i.e. a
patient treatment responsiveness classification as complete
(CR as Complete Response), partial (PR as Partial disease
Regression) or stable (SD as Stable Disease) – Class 1- or,
conversely, a predictive classification (Class 2) of disease
progression (PD as Progressive disease). In medical field,
the neoplastic disease evolution is monitored through a set
of medical guidelines known as Response Evaluation Cri-
teria in Solid Tumors (RECIST) which were developed by
the scientific community to objectively identify the visual
lesions found in CT-scan/MRI imaging that characterize the
disease [18]. In this work, only RECIST (ver. 1.1) CT-scan
compliant lesions will be processed. As described in Fig.
1, the involved physicians select the RECIST 1.1 compliant
lesion by using supplied CT-scan device imaging software,
obtaining the lesion to be analyzed, i.e. the Region of Interest
(ROI) Is(x, y). The segmented Is(x, y) will be processed by
a Genetic-driven Reinforcement Learning block in order to
generate augmented spatio-temporal features arranged as a
Volume of Interest (VOI) of TD ×MD ×ND to be fed to the
downstream 3D Densely Connected Classifier. In this work,
we defined 16 × 64 × 64 as a dimension of each VOI. To
improve the overall performance of the proposed pipeline, we
have extended 3D convolution architectures with an implicit
attention mechanism based on the usage of Non-Local Blocks

[19]. An overview of the implemented deep architecture is
introduced. The backbone of the proposed 3D deep classifier
is a sequence of dense blocks. The model processes a batch
of 16 × 64 × 64 augmented spatio-temporal VOI generated
through the Genetic-driven Reinforcement Learning block
applied to the segmented RECIST 1.1 compliant input CT-
scan image lesion. This VOI is first fed to a 3D convolutional
layer with a kernel size of 3 × 3 × 3, providing an output of
32 features depth. These feature maps will be processed by
six dense blocks composed by [6, 8, 8, 8, 8, 6] 3D layers,
respectively, with the same kernel size, followed by ReLU
non-linear activations. Each dense block is preceded by [0,
1, 2, 3, 4, 5] Embedded Gaussian Non-Local blocks [19]
respectively and each dense block is followed by a transition-
down layer with 2 × 2 × 2 max pooling. Thus, the input
VOI will be processed by the described blocks generating the
feature maps which will gradually decrease (in dimension)
until it becomes a one-dimensional vector having a length
of 736 × 1. The resulting feature map traverses two Fully
Connected (FC) layers followed by RELU, except the last
one that, instead, uses a SoftMax layer for the final binary
classification. Classical negative log-likelihood is used as
loss.

3.1. The CT-scan pre-processing block: CT-scan ROI
Segmentation

As introduced and reported in Fig. 1, the oncologists / radiol-
ogists pre-process the chest-abdomen CT-scan of the patient
through the classical software usually supplied with the CT
scanner device [16, 17, 18]. For each patient, the oncolo-
gist / radiologist will select the RECIST 1.1 compliant CT-
scan image lesion. In order to minimize the subjective impact
of the physician-driven manual choice of the RECIST 1.1.
compliant lesion, the pipeline validation phase is carried out
by means of a k-fold cross-validation session selecting, from
time to time, all RECIST 1.1 compliant lesions of each pa-
tient. In this way, we have evaluated the performance of the
pipeline in each possible setup of the physician’s choice of the
input CT-scan lesion to be processed. The output of this block
is the ROI Is(x, y) which will be normalized (bi-cubic inter-
polation) in size and fed to the Genetic-driven Reinforcement
Learning block.

3.2. The Genetic-driven Reinforcement Learning Block

This block is designed to process the segmented ROIs in order
to generate high-level spatio-temporal discriminant features.
To perform this augmentation task, we extended the classi-
cal 2D Cellular Non-linear Networks (2D-CNN) [20] firstly
introduced by Chua and Yang [21]. The enhanced 2D-CNN
embeds a state-controlled template with a transient-response
stage [17, 18, 19, 20]. Let us introduce the proposed enhanced
2D-CNN model:
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Fig. 1. The proposed 3D Densely Connected Network with Non-Local Block and Unsupervised Genetic-Driven Reinforcement Learning
Layer.

C
dxij(t)

dt
= − 1

Rx
xij+

+
∑

C(k,l)∈Nr(i,j)

Θ(i, j; k, l)ykl(t)+

+
∑

C(k,l)∈Nr(i,j)

Ψ(i, j; k, l)ukl(t)+

+
∑

C(k,l)∈Nr(i,j)

I(i, j; k, l)xkl(t)+

+ ξ

1 ≤ i ≤M, 1 ≤ j ≤ N ; t ≤ tk

(1)

yij(t) =
1

2
(|xij(t) + 1| − |xij(t)− 1|) (2)

Nr(i, j) = {Cr(k, l); (max(|k − i|, |i− j|) ≤ r)}
(1 ≤ k ≤M, 1 ≤ l ≤ N))

(3)

In our pipeline,Rx = 1 while each pixel of the segmented
Is(x, y) will be fed to the model as input ukl and state xkl.
In Eqs. (1)-(3) the Nr(i, j) represents the neighborhood of
each 2D-CNN neuron-cell C(i, j) with radius r while yij(t)
represents the generated hierarchical feature. The dynamic
evolution of the 2D-CNN model occurs in a reduced tran-
sient tk. We defined 16 different setup of the 2D-CNN tran-
sient processing. Specifically, the 3 × 3 cloning templates
Θ(i, j; k, l), Ψ(i, j; k, l), I(i, j; k, l) and bias ξ for each of
the defined 16 setup are randomly initialized together with a
3×3 binary mask ΘBv

(i, j; k, l) for the v−th template matrix

Θv(i, j; k, l) with v = 1, 2...16. During the training phase of
the whole pipeline, the temporal dynamics of the overall loss
L(t) will be retro-propagated to this block which will use it
to configure the elements of the matrix Θv(i, j; k, l) using a
Reinforcement Learning (RL) algorithm. The other cloning
templates remain constant. More in detail, we investigated
the optimal policy Po that optimize the cumulative discount
reward R:

P0 = argmaxP0
E[

∑
t≥0

γtR(.|st, at)|P0] (4)

Where γ is a proper discounted coefficient in (0,1). In
order to evaluate the state st (specific setup of the v − th
cloning templates), we defined the Value function V P0(st)
and the Q-value function QP0(st, at) respectively:

V P0(st) = E[
∑
t≥0

γtR(.|st)|P0] (5)

QP0(st, at) = E[
∑
t≥0

γtR(.|st, at)|P0 ] (6)

while the reward function is so defined:

R = −(
∂L(Θ(·),Ψ(·), I(·), ξ,ΘBv

(·), Bv, v, t)
∂t

)2 (7)

Where L(·) is the loss of the overall pipeline which de-
pends on the state st (Θ(i, j; k, l), Ψ(i, j; k, l), I(i, j; k, l)
and bias ξ) and the actions at and policy P0 defined by
the update of the mask ΘBv

(i, j; k, l) and Bv . For each
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Table 1. Experimental performance benchmarking (Mean ±
Standard Deviation (STD))

Model
Metrics

Accuracy Sensitivity Specificity
Mean STD Mean STD Mean STD

2D ResNet-50 0, 827 0, 040 0, 817 0, 048 0, 837 0, 070

2D DenseNet-201 0, 830 0, 036 0, 847 0, 069 0, 813 0, 067

2D ResNet-101 0, 827 0, 040 0, 817 0, 048 0, 837 0, 070

2D VGG-19 0, 775 0, 071 0, 827 0, 082 0, 723 0, 115

ResNet-18 + Aug. [17] 0, 918 0, 0439 0, 917 0, 064 0, 921 0, 045

3D Resnet-101 0, 857 0, 0487 0, 847 0, 044 0, 867 0, 065

3D DenseNet-201 0, 840 0, 047 0, 833 0, 051 0, 847 0, 065

3D DenseNet-NLB [16] 0, 913 0, 035 0, 923 0, 062 0, 904 0, 033

Proposed 0,932 0,038 0,933 0,061 0,931 0,050
Proposed w/o NLB 0, 913 0, 033 0, 916 0, 047 0, 911 0, 048

Proposed w/o Gen-driv RL 0, 901 0, 038 0, 903 0, 050 0, 900 0, 550

training iteration, a Genetic-driven approach through clas-
sical crossover and mutation operations [22] applied to
the binary mask Bv , selects the v − th cloning templates
setup to modify (among to the 16 defined setup) and always
with a set of crossover and mutation operations, it will
change the binary mask ΘBv

(i, j; k, l) of the selected v − th
setup thus identifying the coefficient of the cloning template
ΘBv(i, j; k, l) which will be randomly updated (action at)
generating a new configuration of the 2D-CNN model. Only
setup that produce a decrease in the overall loss dynamic will
be accepted while the others will be discarded.

3.3. Self-Attention through Non-Local Blocks

As introduced, the proposed downstream classifier consists
of a 3D DenseNet (3D-DCNN) embedding separable densely
connected layers (both depth-wise and point-wise) [16]. The
output of each dense block is then passed to Non-Local
Blocks (NLBs). Non-local blocks have been recently intro-
duced [19], as a very promising approach for capturing space-
time long-range dependencies on feature maps, resulting in
a sort of “self-attention” mechanism. The mathematical pro-
cessing of Non-Local Block is introduced. Given a generic
deep network as well as a general Non-Local Block input data
x (feature map), the employed non-local operation computes
the corresponding response yi at a i location in the input data
as a weighted sum of the input data at all positions j 6= i:

yi =
1

ψ′(x)

∑
∀j

ζ(xi, xj)β(xj) (8)

With ζ(·) being a pairwise potential describing the affin-
ity between data positions at index i and j respectively. β(·)
is, instead, a unary potential modulating ζ according to input

data. The sum is then normalized by a factor ψ′(x). The pa-
rameters of potentials ζ(·) are learned during model’s training
and defined as follows:

ζ(xi, xj) = eΘ′(xi)
T Φ(xj) (9)

Where Θ′ and Φ are two linear transformations of the in-
put data x with learnable weights WΘ′ and WΦ [19]. For the
β(·) function, a common linear embedding (classical 1x1x1
convolution) with learnable weights Wβ is defined. In Eqs
(8)-(9) an Embedded Gaussian setup is reported [19]. The so
processed features will be fed into the final block of the 3D-
DCNN composed by a stack of two FC layers FC1 , FC2

having 350 and 250 neurons respectively. A SoftMax layer
for binary classification close the 3D deep classifier.

3.4. Dataset: Recruitment and data pre-processing

A dataset of 106 histologically confirmed bladder cancer CT-
scan image lesions were retrospectively analyzed within a
clinical trial under the IRB “Catania 1 Ethical Committee”
Nr. D4191C00068 and MO29983 approval. Each recruited
patients were treated with a PD-1/PD-L1 immunotherapy
agent. The used CT scanner: GE multi-slice (64 slices) with
a thickness of 2.5 mm. More in detail, 43 target lesions (of the
106) are associated with patients who experienced positive
response or a disease stabilization (Class 1), while 63 lesions
are associated to patients experienced disease progression
(Class 2). We divided the dataset into a training/validation
set of 76 target lesions (28 of Class 1 and 48 of Class 2) and
a test-set including 30 CT images (15 of Class 1 and 15 of
Class 2). For each lesion, an augmented 16 × 64 × 64 VOI
was generated. The overall deep backbone was trained with
an initial learning rate of 3e−4 and a mini-batch size of 10. A
k-fold cross-validation session has been applied.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Table I reports comparison results in terms of accuracy, sen-
sitivity and specificity. As expected, the collected results
highlight the out-performance of 3D architectures com-
pared to 2D ones. The augmentation pipeline developed
by the authors in [17] allows bringing the performance of the
ResNet-18-based deep backbone to higher values even than
3D architectures. A similar analysis can be applied to self-
attention techniques[16]. Therefore, the high performance of
our proposed pipeline (Accuracy: 0, 932 ± 0, 038 - Sensitiv-
ity: 0, 933 ± 0, 061 - Specificity: 0, 931 ± 0, 050) appears
in line with the mentioned scientific evidence as it combines
both self-attention and augmentation operations. Although
a larger and more balanced dataset is desirable, in medical
practice this is not always feasible due to long, expensive and
complex clinical studies. The reported results confirmed the
effectiveness of the proposed approach even in the presence
of limited cases.
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