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Abstract—This study presents a refined model for supply
chain competition in the transportation of pharmaceutical items,
in stress conditions characterized by high demands of critical
items and closures. Each shipper aims to minimize its costs
by optimizing the parameters of the defined cost function by
means of a supervised learning approach which exploits an
Artificial Neural Network model. Given the challenges posed by
emergency situations, we focus our attention on the imperative to
optimize transportation costs from the shipper to the destination,
while considering the mode of shipment. Specifically, our analysis
leverages the Health dataset from US Supply Chain Information
for COVID-19 to investigate supply chain shipments during the
COVID-19 pandemic, a period marked by significant logistical
challenges in meeting demand and minimizing the cost across
various destination countries. Finally, through this methodology,
we present an illustrative example to observe the optimal supply
chain solutions using a Neural Optimization Machine.

Index Terms—Artificial Intelligence, Supervised Machine
Learning, Health Optimization, Neural Network, Supply Chain,
Neural Optimization Machine

I. INTRODUCTION

Emergencies, whether triggered by man-made or natural
events, significantly impact our social and economic fabric.
Depending on the nature of the emergency, various hazards can
arise in affected areas, underscoring the critical importance of
emergency management. Businesses, in particular, must imple-
ment specialized measures to safeguard their operations from
potential adverse effects of emergencies. Hence, proactive
planning is essential to establish preparedness protocols before
such events occur. In particular, when the emergency encom-
passes the entire world as with the COVID-19 pandemic, it
brings heightened attention to the issues surrounding such
emergency situations. Indeed, significant challenges during
the pandemic revolved around the supply chain disruptions
affecting various goods, including food, medical supplies,
among others. Therefore, emergency management has become
one of the most important and challenging issues. More-
over, emergency resource storage and distribution have led
to strong competition for medical supplies among healthcare
institutions. This study aims to underscore the importance
of observing the distribution of medical supplies from mul-
tiple sources to numerous destinations during an emergency.
Specifically, it focuses on the shipment of medical items and

supplies to hospitals or pharmacies. In our model, we explicitly
analyse how transportation costs of medical items affect the
revenue of a shipper. In addition, the shipment costs, and
its associated parameters are optimized using Computational
Graph Neural Networks (CGNNs), which excel in regression
tasks due to their flexibility, non-linear modelling capabilities,
and adaptability to data. CGNNs, as universal approximators,
can capture complex relationships [1], [2]. They automatically
learn features from data, eliminating the need for manual
feature engineering. Their adaptability allows them to adjust
to the underlying patterns in the dataset during training.
CGNNs are scalable, handling simple and complex regression
problems, and regularization techniques prevent overfitting [3].
Therefore, after identifying the optimal parameters using a
CGNN and comparing the outcomes with Support Vector
Regression model [4], the article proceeds to analyze the
constrained optimization problem. This issue will be addressed
through a numerical example employing a Neural Network
Machine [5], followed by a comparison of results with an
exact optimization method.

A. Related Work

In recent years, researchers worldwide have analyzed emer-
gency situations stemming from both natural phenomena such
as earthquakes, tsunamis, etc., and as a consequence of the
major epidemic of 2020, focusing on the transportation costs
that as to be minimized. This has led to the analysis of
various supply chain models tailored to uncertain emergency
situations, where anomalous conditions are observed for trans-
portation costs compared to everyday data. In [6] the authors
present a supply chain evacuation model where a population
has to be evacuated from crisis areas to shelters and propose
an optimization formulation for minimizing a combination
of the transportation cost and the transportation time. The
authors in [7], [8] proposed a supply chain model to study
the competition of healthcare institutions for medical supplies
in emergencies caused by natural disasters. In particular,
they develop a two-stage procurement planning model in
a random environment, in which each healthcare institution
seeks to minimize the purchasing cost of medical items and
the transportation time solving their constraint optimization



problem. Moreover, to solve an optimization model is impor-
tant to choose an optimization algorithm to find the optimal
solution. In [9], [10], the authors studied the multi-resolution
finite element simulation for structures and materials and
investigated the internal defects in additively manufacturing.
The properties of multi-phase heterogeneous materials are
optimized using a Neural Optimization Machine to minimize
the stress in the simulation domain. In this paper, we show
that the performance of the proposed model is superior to
that of existing model SVR. In [11], the authors optimized
the hyperparameters of SVR and the proposed model could
predict patient flow and provide useful suggestions for hospital
management. In [12], the authors presented a novel prediction
model and compare their model to well-known prediction
models such as Support Vector Regression.

B. Contribution

Our research makes several novel contributions to the field
of supply chain optimization, distinctively advancing beyond
existing literature in the following ways:

• Integration of Computational Graph Neural Networks
(CGNN): Our study pioneers the application of CGNN
to optimize the parameters of the cost function specific to
each shipper within the supply chain. Unlike prior works
such as Franco et al.’s conceptual modeling using causal
loop diagrams [13], which focuses on internal pharma-
ceutical costs within hospitals, our approach extends to
optimizing shipment costs from warehouse to warehouse
across national borders.

• Validation of Neural Optimization Machine (NOM)
on Quadratic Functions: While existing studies explore
Neural Network Machines (NOMs) for various function
types [5], [10], our research uniquely validates NOM on
quadratic cost functions tailored to supply chain logistics.
This validation is significant as it addresses a practical
scenario of optimizing medical shipment costs during
emergencies, which has not been extensively covered in
the literature [14]

• Application Scope and Methodology: Unlike studies
that primarily focus on vehicle routing or general logistics
optimization during emergencies [15], [16], our work
specifically targets the nuanced optimization of shipment
costs using advanced neural network techniques. We in-
troduce a dual neural network structure combining CGNN
for parameter analysis and NOM for solving optimization
problems, thus innovatively addressing the challenges of
emergency supply chain logistics.

• Distinctive Focus on Supply Chain Optimization: Our
study contributes by integrating theoretical advancements
in neural network applications with practical supply chain
management, emphasizing the adaptation and fine-tuning
of cost function parameters to diverse shipping scenarios.
This focused application fills a gap in current research by
enhancing the efficiency and adaptability of supply chain
operations during critical situations.

In summary, our research not only expands the theoretical
foundations of CGNN and NOM applications but also provides
practical insights into optimizing supply chain logistics under
emergency conditions. By validating these methodologies on
quadratic cost functions specific to medical supply chains,
we contribute to advancing optimization techniques in supply
chain management.

C. Organization

The remainder of the paper is organised as follows: Section
I introduces the work; Section II describes the proposed
methodology; Section III presents the Computational Graph
Neural Network; Section IV describes the Neural Optimization
Machine; Section V presents the experimental setup, results,
and relative discussions; Section VI concludes the paper.

II. PROPOSED MODEL

In this section, we present a supply chain model for the
medical supply competition, see also [7], [8]. Let S be the
set of shippers, with typical shipper denoted by s; let D be
the set of destinations, with typical destination denoted by d
and let M be the set of transportation modes, with typical
mode denoted by m, in Figure 1 denoted by different colored
connections between origin and destination. We assume that N
supply medicals, with their respective weight xm

sd, are located
in some shippers’ warehouse and must be shipped to some
destinations, using a specific transportation mode.

Shippers

s1 S

d1 D

Destinations

Fig. 1: Supply chain representation. The shipment from each
shipper s to each destination d, using different type of modes
m, indicated by different colors.

Let Cs(x
m
sd) be the shipment cost for each shipper s:

Cs(x
m
sd) = asx

m
sd + bs(x

m
sd)

2, (1)

where as ∈ R and bs ∈ R are the personal-type coeffi-
cients that capture the shippers’ heterogeneity. This function
represents the transportation costs that the shipper has to
ship medical items from his warehouse s to the destination
d. As remarked in [17], the quadratic form of the internal
transportation costs does not only allow for tractable analysis
but also serves as a good second-order approximation for a
broad class of convex costs functions. In particular, as models
the maximum internal demand willingness rate, and bs models



such willingness elasticity factor. The aim of each shipper is
to solve his constraint optimization problem:

Minimize
∑
d∈D

∑
m∈M

(
asx

m
sd + bs(x

m
sd)

2
)

(2)

subject to xm
sd ≥ 0 (3)

xm
sd ≤ Wm

d , (4)

where Wm
d is a fixed maximum weight for each shipment

and depend on the mode used and the destination chosen and
(3) represents the non-negativity constraint for the weight that
shippers has sent to each destination in the dataset considered.

III. COMPUTATIONAL GRAPH NEURAL NETWORK

A computational graph is a visual representation of a
mathematical function using the principles of graph theory.
Graph theory, at its core, revolves around the concept of
nodes connected by edges, with everything in the graph being
either a node or an edge. Within a computational graph, nodes
represent either input values or functions that manipulate these
values. Edges in the graph carry weights as data flows through
it. Outbound edges from an input node are weighted with
that input value; outbound nodes from a function node are
weighted by combining the weights of the inbound edges using
the specified function. For instance, we consider the relatively
expression (1), which represents ŷs, the value to compare
with the target ys, i.e. the cost of the shipment in dollars. A
deep neural network is like a framework for a mathematical
function. When we define the architecture of a neural network
we are laying out the series of sub-functions and specifying
how they should be composed and how they are connected
each other. During the training phase of the neural network,
we manipulate the parameters of these smaller functions to
adjust them on a complex instrument. Let be (1) our function,
where as and bs are scalar coefficients. The individual com-
ponents within this function encompass various mathematical
operations: one square, three multiplications and one addition.
The tunable aspects of this function are the coefficients as and
bs, which in the realm of neural networks, are referred to as
weights. The input to the function, represented by xm

sd remain
fixed as they are derived from the dataset and are beyond our
control during the machine learning process. By modifying
the values of our weights as and bs, we can dramatically
influence the output of the function. Nevertheless, irrespective
of the specific values assigned to as and bs, the function
consistently contains terms involving (xm

sd)
2. Consequently,

our function maintains a distinct but bounded range of po-
tential configurations. We consider a quadratic function as a
consequence that in economic optimization models is used to
consider this type of function as shipping cost or in general
costs for manufacturers, retailers etc... (see [18]–[20]). The
cost function for each shipper s to all destination d, using
different type of modes m, is depicted as a Computational
Graph Neural Network in Fig. (2).

as

xm
sd ×

×

(xm
sd)

2

asx
m
sd

+

×bs bs(x
m
sd)

2

asx
m
sd + bs(x

m
sd)

2

Fig. 2: Computational Graph Neural Network

IV. NEURAL OPTIMIZATION MACHINE

Once the optimal parameters have been found, it is nec-
essary to solve the optimization problem. The method we
decided to use to solve our problem is the Neural Optimization
Machine (NOM). In [5], [10], the authors demonstrated that
this model is efficient for solving constrained, unconstrained
and multi-objective optimization problem using neural net-
works. They compared the model with genetic optimization
and swarm optimization algorithms, obtaining excellent per-
formance. Briefly, a NOM solves an optimization problem in
using the neural networks’ built-in backpropagation algorithm
by properly designing the Neural Network architecture. On the
one hand, in the backpropagation algorithm, the basic method
is stochastic gradient descent. It computes the gradients of
the loss function with respect to the weights and biases.
The weights and biases are then updated by the gradient
information. At the end of the training, a set of local opti-
mal weights and biases are obtained. Moreover, the gradient
descent method can also be used to solve the optimization
problem. It requires computing the gradient of the outputs
of the Neural Network objective function with respect to its
inputs. For further information see the following articles [5],
[10]. In Section V, we present one of our experiments using
NOM for constrained optimization problem, as a illustrative
example.

V. RESULTS AND DISCUSSION

A. Experimental Dataset

This study used a dataset from Kaggle, US Supply Chain In-
formation for COVID-19. We considered the ORIG-STATE and
the DEST-STATE as shippers and destinations, respectively.
Each state is identified by its Federal Information Processing
Standards (FIPS) code ranging from 01 to 56. In addition,
we consider as transportation modes, the MODE, i.e. mode of
transportation of each shipment from a shipper to a destination.
Let be the input SHIPMT WGHT, i.e. the weight of each
shipment in pounds and finally let be the target value, ys, of
the shipment in dollars SHIPMT VALUE, i.e. the cost of the
shipment in dollars. The dataset contains 45 SCTG, Standard
Classification of Transported Goods Codes, i.e. 2-digit SCTG
Commodity Code of the shipment to identify the typology of
the items. For our purpose, we consider the shipment with the



Code 21, i.e. Pharmaceutical Products. As a consequence some
shipping origins were losing significance for the study because
they contained limited data regarding this type of shipment.
Indeed, the number of Shippers considered in our experiments
are |S| = 48, see Table II.

B. Experimental Settings

1) Baseline SVR: In the SVR (Support Vector Regression)
model, a nonlinear regression is performed by mapping the
original feature space X onto a new feature space X ′ using a
nonlinear mapping x → ϕ(x). This transformation allows us
to capture nonlinear relationships between the input features
xm
sd and the target variable ys.
Mathematically, the relationship between xm

sd and ys in the
SVR model can be expressed as follows:

Ys =
∑
k

βkykK(xk, x
m
sd) + b,

where Ys is the predicted target variable for the generical
input xm

sd, βk is the coefficient of the Lagrange multipliers,
yk is the target variable corresponding to the support vec-
tors xk, K(xk, x

m
sd) is the kernel function, which calculates

the similarity between the support vectors xk and the input
xm
sd. This kernel function allows us to map the data into a

higher-dimensional space where nonlinear relationships can
be captured. The kernel helps SVR to capture different types
of nonlinear relationships between input features and target
variables.

2) Prepocessing: The distribution for training and testing
datas is 70% and 30%, respectively. The performance of the
model was evaluated through MSE (5). We consider 100 and
1000 epochs of training with a learning rate of 0.001 and batch
size 16.

3) Prediction Parameters: The performance of the pro-
posed method is evaluated using the metrics given in Table I :
Mean Square Error (MSE) for our model and for the Support
Vector Regression (SVR), see [21]. The metric is defined as:

MSE =
1

|S|

S∑
s=1

(ys − ŷs)
2 (5)

C. Result Analysis

For training and evaluating a Support Vector Machine Re-
gression model (SVR), a fundamental component in predictive
analytics and machine learning, is used. The dataset undergoes
a pivotal split into training and testing subsets. This partition-
ing strategy ensures that the model is trained on a distinct
portion of the data and subsequently evaluated on unseen
instances, safeguarding against overfitting and providing an
accurate estimation of the model’s generalization performance.
Then, a crucial preprocessing step ensues, wherein the features
are standardized using the StandardScaler. Standardization is
imperative for enhancing the model’s convergence properties,
as it scales the features to have a mean of zero and a stan-
dard deviation of one. By normalizing the feature space, we
mitigate the influence of outliers and discrepancies in feature

TABLE I: Optimal Parameters obtained for 100 epochs and
relative metrics, for each shipper to each destination using a
transportation mode.

Shipper as 100 bs 100 best mse 100 svr mse

1 -0.371839 0.000225 5.197391e+08 5.256551e+08
2 -0.119827 0.720953 1.523970e+09 2.545136e+10
4 -0.400317 0.000067 8.517217e+08 1.052328e+10
5 1.366001 0.344382 1.076113e+07 1.086703e+07
8 -1.135799 0.002056 2.629670e+09 2.967939e+09
9 0.713142 0.000120 3.858925e+08 4.146675e+08

10 0.282592 0.023349 5.934452e+13 1.243443e+14
12 -0.757118 0.000022 2.733869e+09 3.550352e+09
13 0.969651 -0.000039 2.340329e+11 2.354039e+11
15 1.267865 0.000140 1.272984e+08 1.898105e+08
16 -1.025665 0.042876 5.958752e+06 1.776799e+09
17 1.596166 0.000119 7.591839e+10 1.165793e+11
18 -0.928571 0.000631 2.601719e+10 1.153366e+11
19 -0.264430 0.000199 8.744938e+07 1.078784e+08
20 0.728520 0.000372 2.154563e+09 3.217343e+09
21 -1.550962 0.000142 1.925286e+08 2.104150e+08
22 1.110282 0.000022 4.405172e+08 1.966950e+09
23 -0.257233 0.000161 3.841563e+08 5.959191e+08
24 -0.103659 0.000015 6.153357e+09 5.830063e+10
25 -0.896780 0.000984 4.422943e+10 4.762152e+10
26 -0.030042 0.000261 8.740391e+10 9.491336e+10
27 -1.424691 0.000558 1.193523e+09 1.631018e+09
28 0.577734 0.000079 2.012408e+07 1.083249e+08
29 0.241570 0.000047 4.197499e+11 1.011049e+12
30 0.817556 0.000895 1.652810e+07 3.991144e+08
31 0.888650 0.000008 2.950662e+08 3.594547e+08
32 -0.693383 0.614393 9.822186e+08 3.491325e+10
33 1.398881 0.007820 1.428259e+07 4.192016e+07
34 -0.228766 0.000216 7.484862e+10 7.719484e+10
35 0.140957 0.000093 4.713419e+08 4.978047e+08
36 -1.152758 0.000202 2.646952e+10 3.615392e+10
37 -1.181616 0.000955 1.578757e+12 8.541090e+12
38 0.174052 1.306873 1.259062e+03 3.098663e+03
39 0.010496 0.000002 2.130807e+11 3.669545e+11
40 0.810885 0.000125 2.731858e+07 1.500541e+08
41 0.873363 0.000248 1.646164e+08 1.787679e+08
42 -0.216764 0.000291 9.131278e+10 9.192584e+10
44 -0.965053 0.000161 4.344464e+08 7.617139e+08
45 0.941932 0.000065 2.055724e+10 3.294369e+10
46 0.257064 0.000172 5.072158e+06 2.710161e+08
47 -0.880924 0.004779 1.052767e+13 1.279735e+13
48 -1.428957 0.000077 4.788906e+09 7.709044e+09
49 1.252321 -0.000018 7.381890e+08 1.277091e+09
50 -0.230021 0.003578 2.957562e+08 5.419364e+09
51 0.185936 0.001444 8.406393e+10 2.554171e+11
53 -0.046740 0.000309 3.602948e+07 5.928175e+07
54 -0.599415 0.001017 5.333128e+09 4.330959e+10
55 -0.477663 0.006914 4.365712e+09 1.955903e+10

magnitudes, fostering a more robust and stable model. We
construct an Support Vector Regression Model, i.e. the creation
of an SVR model tailored to the dataset’s characteristics.
Employing a linear kernel, the class instantiates an SVR
capable of capturing complex relationships between the input
features and target variable. SVRs excel in both linear and
nonlinear regression tasks, leveraging the principles of margin
maximization to delineate optimal decision boundaries and
discern underlying patterns in the data. For the training, the
SVR undergoes rigorous training on the standardized train-
ing data, assimilating the underlying patterns and intricacies



inherent in the dataset. Through an iterative optimization
process, the model adjusts its parameters to minimize the
disparity between predicted and actual target values, iteratively
refining its predictive capabilities. Following model training,
the predictive prowess of the SVR is put to the test, as it makes
informed predictions on the unseen test data. These predictions
are subsequently evaluated using the Mean Squared Error
(MSE), a quintessential metric for quantifying the model’s
predictive accuracy. The MSE quantifies the average squared
difference between predicted and actual target values, provid-
ing valuable insights into the model’s performance across the
entire test dataset. Finally, we made a comparison between
the performance of the current SVR model and the best-
performing of our model. By scrutinizing the MSE values,
we ascertain whether our CGNN model surpasses the SVR
in predictive accuracy. If our CGNN model exhibits superior
performance, as evidenced by a lower MSE, the model chosen
to optimize the parameters is better. Furthermore, as can be
seen from the Table I, the CGNN model is always better
than the SVR, i.e. it has a lower MSE. For reasons of space
we have decided to report in the Table I only the optimal
parameters obtained for 100 epochs, the best mse for 100 and
the svr mse for 100 epochs. In conclusion, the Computational
Graph Neural Network (CGNN) method yields superior results
compared to SVR, but its strengths extend beyond mere per-
formance enhancement. This approach enables the modeling
and construction of both linear and nonlinear mathematical
functions, allowing for the selection of the best-fitting curve
and polynomial expression to approximate our data. Thus,
depending on the selected problem, the optimization function
can be tailored to be more characteristic and specific, taking
into account the problem at hand and the available data.

D. Constrained Neural Network Machine

Once the optimal parameters as and bs are found for each
shipper, it is interesting to observe their respective optimiza-
tion problems. Due to space limitations, we have decided to
solve an optimization problem for a general shippers. We
studied the problem of minimizing shipping costs for second
shipper. We consider the Neural Network Machine, in which
we obtain the optimal value of the function considering 1000
epochs, batch size 16 and learning rate 0.001. In the numerical
example, we solve the following optimization problem for
shipper 2.

Minimize: C1(x
1
2d) =− 0.119827x1

21 + 0.720953(x1
21)

2

− 0.119827x1
22 + 0.720953(x1

22)
2;

subject to 0 ≤ x1
21 ≤ 1,

0 ≤ x1
22 ≤ 1,

where each constraint correspond to a layer in the Neural
Optimization Machine (see [10]). In this example, we define
the variable constraints lie within the interval [0, 1], with the
aim to consider the percentage of shipment weight relative
to the maximum weight value in the dataset. This approach
ensures the standardization of shipment weights across all

shippers, destinations, and modes of transportation. In Table II,
we summarize the results obtained using the exact method and
the Neural Optimization Machine (NOM). In this case, there is
the possibility to use an exact method due to the lower number
of variable used for the illustrative example. Moreover, in the
case of a complete study, it will not be possible to solve the
optimization problem, using an exact method. Therefore, we
would be compelled to resort to a non-exact method, such as
a classical genetic algorithm, a swarm intelligence algorithm,
or indeed utilize the algorithm developed for a neural network
that solves optimization problems, such as the NOM. In [5],
the authors demonstrate that the NOM outperforms or matches
the performance of other non-exact algorithms for constrained
optimization and approaches the solution found even with the
exact method, which is naturally faster than any non-exact
algorithm.

TABLE II: Results of the optimization algorithms

Optimization Methods

Exact Method Neural Optimization Machine

Results x1
21 0.0831032 0.08227842

x1
22 0.0831032 0.08427878

VI. CONCLUSION AND FUTURE WORKS

This study introduces a pioneering approach to tackle
the complexities of supply chain optimization, particularly
under emergency conditions such as the transportation of
pharmaceutical items during the COVID-19 pandemic. By
framing the problem as a regression task and employing
a Computational Graph Neural Network (CGNN), we have
successfully minimized transportation costs while considering
critical factors such as shipment modes and destinations.
Our method surpasses the baseline Support Vector Machine
Regressor (SVR) across all evaluated shippers, demonstrating
its efficacy in real-world scenarios using data from the US
Supply Chain Information for COVID-19 dataset.

The utilization of neural network models in optimizing
supply chain operations during crises offers substantial insights
and practical solutions for mitigating logistical challenges
and reducing costs. Our findings underscore the capability
of interdisciplinary approaches, integrating advanced machine
learning techniques with supply chain management, to en-
hance resilience and adaptability in the face of unprecedented
disruptions. This framework not only addresses immediate
operational challenges but also lays the groundwork for future
advancements in supply chain optimization methodologies.

Moving forward, future research directions include expand-
ing the scope of our model to compare its performance against
other existing models and regression techniques. Further in-
vestigation will focus on identifying all optimal solutions
for individual shippers and conducting comparative analyses
with traditional optimization algorithms. Additionally, ongoing
efforts will explore the scalability and applicability of our



approach across different emergency scenarios and global
supply chain networks.

In conclusion, the methodology presented in this study
represents a significant advancement in the field of supply
chain optimization, leveraging state-of-the-art neural network
models to achieve efficient and adaptable solutions. As we con-
tinue to navigate through future emergencies, this research sets
a promising precedent for enhancing supply chain resilience
and optimizing operations amidst evolving global challenges.
In the future, we aim to validate our approach with differ-
ent datasets, potentially expanding beyond pharmaceuticals
to encompass broader supply chain contexts, and exploring
alternative optimization models tailored to specific operational
constraints and objectives.
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