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ABSTRACT It is well known that the JPEG compression pipeline leaves residual traces in the compressed
images that are useful for forensic investigations. Through the analysis of such insights the history of a
digital image can be reconstructed bymeans of First Quantization Estimations (FQE), often employed for the
camera model identification (CMI) task. In this paper, a novel FQE technique for JPEG double compressed
images is proposed which employs a mixed approach based on Machine Learning and statistical analysis.
The proposedmethod was designed to work in the aligned case (i.e., 8×8 JPEG grid is not misaligned among
the various compressions) and demonstrated to be able to work effectively in different challenging scenarios
(small input patches, custom quantization tables) without strong a-priori assumptions, surpassing state-of-
the-art solutions. Finally, an in-depth analysis on the impact of image input sizes, dataset image resolutions,
custom quantization tables and different Discrete Cosine Transform (DCT) implementations was carried out.

INDEX TERMS FQE, JPEG, multimedia forensics.

I. INTRODUCTION
The everyday number of digital images acquired, stored or
simply shared is constantly growing due to the widespread
of social networks. Similarly to other kind of data, it is
possible to give a life-cycle to digital images, consisting
on the following steps: acquisition by means of a digital
device, editing and uploading to Instant Messaging plat-
forms or Social Networks (these last steps could be donemore
than once). Often, the aforementioned steps, produce a JPEG
double (multiple) compression [1] on the image data, which
means that a lot of the original information (acquisition) is
definitively lost. If the image became a forensic evidence it
would be investigated: its history needs to be reconstructed
([2], [3]). This reconstruction could be done by identifying,
whenever is possible, the camera model and the camera
source device [4], [5]. Specifically the investigation process
would start by detecting traces of the double compression [6],
then go through the retrieval of the camera model by means
of First Quantization Estimation (FQE) [7] and finally the
identification of the source by means of Photo Response
Non Uniformity (PRNU) analysis ([4], [8]). In this paper,
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a novel approach for the estimation of quantization factors
is presented. In order to estimate the quantization factors
employed in the first quantization matrix in images JPEG
double compressed, the proposed approach exploits compar-
isons with a proper reference dataset of distributions built on
Discrete Cosine Transform (DCT) statistics [9]. Specifically,
the proposed method was designed to cope with the typical
limits affecting both statistical FQE approaches (e.g., low
accuracy with small patches, strong a-priori assumptions
about involved quantization matrices) and machine learning
based methods (e.g., overfitting with respect to input patch
content and quantization tables employed in the training
phase). It works without strong a-priori assumptions on the
quantization matrices employed in the compression process
of the analysed images.

Although some state-of-the-art methods ([10], [11])
employed more complex properties and modeling of the DCT
distributions, these are not employed in the presented work
due to computational limits. Experimental results in challeng-
ing scenarios (i.e., small patches, custom quantization tables)
and comparisons with the state-of-the-art, demonstrated the
effectiveness of the proposed method. A preliminary ver-
sion of the technique was proposed in [12]. In this paper,
the experimental part was widely extended with an in-depth

73110 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-6127-2470
https://orcid.org/0000-0002-8343-2049
https://orcid.org/0000-0002-7703-3367
https://orcid.org/0000-0002-4558-9803


S. Battiato et al.: FQE by Robust Data Exploitation Strategy of DCT Coefficients

analysis of the performances of themethod at varying of input
patch sizes, employed datasets (low and high resolution),
different DCT implementations.

The remainder of this paper is organized as in the follow-
ing. In Section II the state-of-the-art is presented; Section III
explains the JPEG notation employed in the paper; Section IV
describes the proposed novel approach with discussion on its
parameters in Section V. Experimental results are reported in
Section VI while Section VII concludes the paper.

II. RELATED WORKS
First quantization estimation is extremely useful when con-
ducting forensic investigations as it gives information about
the history of images. In recent years several solutions have
been proposed. The research activity on the field was mainly
devoted, at first, to the estimation of the first quantization fac-
tors when a change of image file format (e.g., from JPEG to
Bitmap), is involved in the process. Fan and De Queiroz in [3]
outlined a method to detect whether a Bitmap image was
previously JPEG compressed and subsequently estimated the
applied quantization matrix; the same scenario with different
lossless formats is faced by Li et al. [13]. The problem was
firstly studied in a simpler single compression and file format
change scenario useful to understand the produced JPEG
artifacts. This attracted the attention of more researchers:
to date [14]. Bianchi and Piva [15], Bianchi et al. [16], and
Piva and Bianchi [17] proposed the first robust technique for
FQE; based on the Expectation Maximization algorithm to
determine the most likely quantization factors for the primary
compression over a set of candidates.

Histograms of the quantized DCT coefficients have been
analyzed in different ways. Galvan et al. [18] introduced a
technique that worked only at specific conditions. Similar
approaches related to histogram analysis and filtering have
been introduced in [19], [20] and [21] while others tech-
niques faced the task with high resolution images [22]. More
recently, the intuitive insights employed for steganography
detection have been exploited by Thai et al. ( [10], [23]).
Although they have obtained good results in terms of overall
accuracy, their method only worked with specific first-second
compression factor combinations, avoiding estimation when
multiple quantization factors are involved. Given the large
amount of data that can be computationally analyzed today,
such issue has been also addressed by means of modern
Machine Learning approaches. Lukáš and Fridrich in [24]
have provided an initial tentative by exploiting neural net-
works, further refined in [25] with error considerations sim-
ilar to [18]. Recently, some papers ([26]–[28]) have faced
the FQE problem through the use of Convolutional Neural
Networks (CNNs). CNNs have proven to be amazingly strong
at spotting undetectable correlations on data, however, due to
the large number of involved parameters, they could suffer
from overfitting (i.e., the obtained model is not generalizable
enough to represent the phenomenon under analysis).

Machine Learning techniques such as CNNs may be
closely related to the dataset they were trained on.

FIGURE 1. Example of the constant matrix Mi with i = 3 (a), and the
standard quantization matrix with QF = 90 (b).

The reliability of these methods need then to be demonstrated
under ‘‘wild’’ conditions. State-of-the-art CNN results have
been achieved by Niu et al. [29] and Tondi et al. [30] where
the best results for both aligned and non-aligned FQE scenar-
ios were presented.

The proposed method, employing a minimal set of param-
eters and a reference dataset, is designed to overcome the
limitations of both CNN-based and analytical state-of-the-
art solutions. This may be accomplished by fitting appropri-
ate statistics on DCT coefficients in order to get rid of the
necessity of a training phase and without falling into all those
limitations of an analytical methods.

III. JPEG NOTATION
Starting from a raw image I , JPEG compression [31] could
be defined as a function fQ such that I ′ = fQ(I ), where I ′

is the JPEG compressed image, Q is a 8 × 8 quantization
matrix composed by the quantization factors qi ∈ N with
i ∈ {1, 2, . . . , 64}. Firstly, fQ(I ) converts I from the RGB
color space to the YCbCr one, then divides it in 8 × 8 non-
overlapping blocks and applies the integer DCT. Finally, each
8 × 8 block is divided by Q pixel by pixel, rounded (los-
ing information) and then encoded by classic entropy based
engine. In the analysis presented in this paper, only Y channel
(luminance) will be considered. Let’s define I ′′ = fQ2 (fQ1 (I ))
a JPEG double compressed image, where Q1 and Q2 are the
quantization matrices employed for the first and the second
compression respectively.

In this paper, we will refer to QF as the standard quantiza-
tion matrix defined by JPEG for a specific quality factor [31].
QFi denotes the quality factor used for the i-th JPEG com-
pression.

We denote with hi the empirical distributions built from the
i-th DCT coefficients considering all the 8 × 8 blocks of I ′′.
Moreover, we define the k quantization factors in zig-zag
order ofQ1 as q11, q12, . . . , q1k , and the quantization factors
employed in the first and in the second compression as q1
and q2. Finally, in our tests, we define q1max as the maximum
value among all the quantization factors to be predicted.
Considering as example the matrix reported in Fig. 1b and
q11, q12, . . . , q1k in zig-zag order with k = 15, q1max value
is 5 (highlighted in the figure).
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IV. FQE THROUGH COMPARISON
A. RETRIEVAL DISTRIBUTIONS
The proposed solution aims to exploit the information avail-
able in double JPEG compressed images without suffer-
ing from overfitting that usually limits Machine Learning
approaches. In the state-of-the-art, many FQE methods point
out some limits with respect to the specific quantization
tables on which they work; for example Niu et al. in [29]
and Tondi et al. in [30] provide Neural Network models
only trained with standard quantization matrices as Q2 (with
QF2 ∈ {80, 90}). To this aim, an additional contribution of
our method is the ability to provide satisfactory results even
in challenging conditions (i.e., custom matrices) where other
methods typically fail.

The first part of the underlying technique is the generation
of the reference data to compare with the query image for the
FQE. To this purpose, starting from a collection of 8156 high-
resolution uncompressed images (RAISE dataset [33]) a
64× 64 central patch was extracted. Then, every combina-
tion of constant matrixMi (Fig. 1), with i ∈ {1, 2, . . . , q1max}
was employed for the double compression of the image. The
choice of q1max has been done taking into account realistic
scenarios as detailed in the following. We observed a good
trade-off between the amount of the data to be generated
(q1max × q1max combinations) and the maximum quantiza-
tion factor to be estimated. Taking into account the standard
quantization tables, q1max = 22 (in the first k = 15
DCT coefficients) means including all the standard matri-
ces with QF ≥ 55 which represents the worst case usually
analyzed for this scenario in the state-of-the-art. Moreover,
if we consider the collection of matrices employed in real-
case-scenario as those shown in Park et al. [32] it means
considering about the 81% of them (873 on 1070) (Fig. 3).

Hence, we generated 8156 × 22 × 22 = 3.947.504
double compressed images. The generated dataset represents
the set of items considered for the comparisons. The choice
to build the reference dataset employing the combinations
of constant matrices Mi was done in order to safely break
the correlation with real quantization matrices (e.g., standard
ones). This composition makes generalizable the approach
w.r.t. any JPEG double compressed image (in the aligned
scenario). To carry out the comparison between the query
item (JPEG double compressed image under analysis) and
the reference dataset, DCT coefficient distributions hi, with
i ∈ 1, 2, . . . , q1max were employed. For this reason, the first
k distributions hi were calculated, and then clustered in sub-
datasets labelled by the couple {q1, q2}.
Lam and Goodman [9] have shown the usefulness of

the Laplacian distribution (1) during the years ([34], [35]);
we then fitted the distributions hi of ACs by considering the
following equation:

f (x) =
1
2β

exp
(
−|x − µ|

β

)
(1)

where β and µ are obtained through MLE (Maximum Like-
lihood Estimation) closed form solution.

FIGURE 2. A schematic representation of the proposed FQE method. The
pipeline starts with a JPEG double compressed image. Each DCT
histogram hi is then compared with proper subdatasets computing χ2

distance. Most similar histogram for each element is chosen for the FQE
task.

FIGURE 3. Percentages of custom matrices in Park’s dataset [32] with
quantization factors lower than 23 for the first 15 coefficients.

The estimation of β was employed for sub-datasets sorting
of the AC distributions (hi with i > 1), while the sort of DC
distributions h1 was done through the use of median value m.
The reference dataset after sorting is composed as follows:

• DCdset : DC distributions split for every possible couple
{q1, q2} sub-datasets (sorted by m);

• ACdset : AC distributions split for every possible couple
{q1, q2} sub-datasets (sorted by β).

The model described in (1) is very simple and allows
to better organize the data reducing at the same time the
computational complexity of the proposed solution. For this
reason more complex models, as in [10], are not required
here. It is clear that the performance of the algorithm has a
little dependence with the training set: bigger is the training
set, better will be the estimation. The overall dimensions
of involved datasets in our experiments have been selecting
accordingly.

B. QUANTIZATION FACTOR ESTIMATION
Given I ′′, the estimation of the first k quantization factors
{q11, q12, . . . , q1k} ofQ1 is summarized in Algorithm 1 and
Figure 2.
Every single q1i with i ∈ {1, 2, . . . , k} is estimated through

the following steps:
1) extract hi from I ′′ employing LibJpeg C library.1

2) fit hi to the Laplacian distribution in order to extract β
(if i > 1) or compute the median value m (if i = 1).

1https://github.com/LuaDist/libjpeg
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Algorithm 1 The Proposed FQE Technique
Input: double compressed image I ′′

Output: {q11, q12, . . . , q1k}
Initialization : k , q1max

1: for i = 1 to k do
2: hi : (empirical) distribution of i-th DCT coefficient
3: if (i = 1) then
4: D : DCdset
5: m : median value of hi
6: else
7: D : ACdset
8: β : β fitted on Laplacian hi
9: end if

10: q2i : quantization factor of Q2 for i-th DCT
11: for j = 1 to q1max do
12: Dj,q2i : sub-dataset (q1, q2) with q1 = j, q2 = q2i
13: Dj,q2i (m, β) : sub-range with most similar m, β
14: di,j : lower χ2 distance between hi and Dj,q2i
15: end for
16: q1i : argmin{di,j}, j ∈ {1, 2, . . . , q1max}
17: end for
18: regularize({q11, q12, . . . , q1k})
19: return {q11, q12, . . . , q1k}

3) use β (or m) to seek the range of candidates from the
reference dataset.

4) find the most similar distribution between the
candidates.

It is worth noting that the step 1 avoids further truncation and
rounding errors and the usage of β (if i > 1) and m (if i = 1)
make constant the computational time to retrieve the most
similar distribution.

The header of a JPEG file contains the matrix employed
in the last compression, Q2 in the considered scenario.
The availability of q2i allows us to select the sub-dataset
to be employed. For each sub-dataset {qj,q2i} with j ∈
{1, 2, . . . , q1max} we select a range of elements Dj,q2i (m, β)
with the most similar values of β for ACdset andm forDCdset ,
to be compared with hi using χ2 distance:

χ2(x, y) =
m∑
i=1

(xi − yi)2/(xi + yi) (2)

where x and y are the distributions to compare.
Given a sub-dataset Dj,q2i , we select the lowest distance

di,j obtaining q1max distances. The minimum distance di,j,
j ∈ {1, 2, . . . , q1max} allows to find the related sub-dataset
and then the predicted q1 for the current i.

C. REGULARIZATION
Analyzing the distances di,j obtained in the previous section,
it is possible to note that a strong minimum cannot be
always found. Sometimes, the histogram hi does not contains
enough information to discriminate among the q1i values to
be estimated. In order to overcome such limitation, also data

FIGURE 4. Accuracy of the proposed approach w.r.t. the number of
neighbors considered for comparison.

related to neighboring DCT coefficients have been consid-
ered. Specifically, the empirical hypothesis that consecutive
first quantization factors considered in zig-zag order have
similar values has been exploited. Taking into account three
consecutive q1, and fixed k = 15, 13 triplets (q1i−1, q1i,
q1i+1, i = 2, . . . , 14) can be found. A single triplet (q1i−1,
q1i, q1i+1) can be then estimated through a cost function
in which all possible q1 combinations (i.e., 22 × 22 × 22
with q1max = 22) are considered. The cost function C is
designed as the weighted average of a data term (Cdata) and
a regularization term (Creg):

C = wCdata + (1− w)Creg (3)

where w ∈ [0, 1], Cdata is the normalized sum of the three
distances di,j, and Creg is the regularization term introduced
to reduce the difference among neighboring q1 values. Addi-
tional details related to the design of Creg will be presented in
Section V-B.

V. PARAMETER SETTING
The parameters discussed in Section IV, were set through
a validation dataset DV composed of 8156 64 × 64 pixel
patched, cropped at random position from RAISE [33]
dataset. For computational reasons, only for the AC coef-
ficients, we employed 1/8 of the available distributions to
compose ACdset .

A. CLUSTERING
Given a second quantization factor q2, the number of the
associated reference sub-dataset to be considered is q1max .
To reduce the computational complexity of the proposed solu-
tion we employed a comparison strategy that properly exploit
m and β values to limit the number of distributions hi to be
taken into account. To set the right number of comparisons to
be performed a sub-range of 50, 100, 250, 500, 1000, 2000
elements for each sub-dataset were tested as shown in Fig. 4.
It is evident from the Fig. 4 that the chosen value (i.e., 1000) is
a good trade-off between the overall computational cost and
the accuracy w.r.t. the full search solution.

B. REGULARIZATION
As alreadymentioned in Section IV, sometimes histograms hi
do not contains enough information to properly estimate the
related first quantization factors. To cope with this problem a
regularization function has been employed. Specifically, the
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TABLE 1. Accuracies obtained by the proposed approach compared to Bianchi et al. [15], Galvan et al. [18], Dalmia and Okade [19], Niu et al. [29],
Tondi et al. [30] and Battiato et al. [36] with different combinations of QF1/QF2, considering standard quantization tables.

TABLE 2. Accuracies obtained by the proposed approach compared to Bianchi et al. [15], Galvan et al. [18], Niu et al. [29], Tondi et al. [30] and
Battiato et al. [36] employing custom tables for first compression. The column PS refers to custom tables used by Photoshop.

FIGURE 5. Comparison between the modes of the accuracies obtained for
different values of the regularization parameter w employing the three
equations (4), (5), (6) respectively.

proposed approach simultaneously estimates triplets of near-
est q1i and the following Creg functions have been analyzed:

Creg1 =
|ci − ci−1| + |ci − ci+1|

2
(4)

Creg2 =
|ci − ci−1| + |ci − ci+1|

2
√
ci

(5)

Creg3 =
|ci − ci−1| + |ci − ci+1|

2ci
(6)

where ci−1, ci, ci+1 are consecutive quantization factors can-
didates in zig-zag order. For each q1i multiple estimations
are actually provided. As example q13 can be estimated in
three different triplets: (q11, q12, q13), (q12, q13, q14) and
(q13, q14, q15). Different strategies have been analyzed to
properly exploit the information provided by the multiple
estimations. As reported in Fig. 5, we studied the modes
of multiple estimations related to eq. (4), (5), (6), choosing
eq. (6) with w = 0.92. The usage of just 3 terms has been
selected as a good trade-off in order to characterize local
coherence and limit the overall number of requested tests
involved in the parameter setting.

VI. EXPERIMENTAL RESULTS
The difficulty of the first quantization factor estimation task
is proportional to the relative position in the quantization
matrix, as reported in literature. High frequencies are used
to be quantizated heavily and after certain values the recov-
ered value after dequantization is always zero (e.g., ’dead
zone’ quantization). For this reason but also for compar-
ison with the state-of-the-art, we set k = 15, although
our method doesn’t suffer from this specific limitation on
k value.

A. COMPARISON TESTS
In order to compare the proposedmethodwith state-of-the-art
approaches we consider methods based on statistical analysis
(Bianchi et al. [15], Galvan et al. [18], Dalmia et al. [19],
Battiato et al. [36]) and two methods based on Machine
Learning (Niu et al. [29] and Tondi et al. [30]). All the tests
were done employing the implementations provided by the
authors. In order to carry out the comparisons, 4 different
datasets were generated: from every image of RAISE [33]
dataset, a random patch 64 × 64 was cropped and then
compressed two times by considering:

1) QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98},
QF2 = 90

2) QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98},
QF2 = 80

3) Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 90
4) Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 80

whereQ1 ∈ {5, 6, 7, 8, 9, 10, 11, 12} of 3) and 4) are referred
to Photoshop’s quantization matrices (CC version 20.0.4).
All the methods were tested with the datasets described
above; only Dalmia et al. [19] was excluded in the tests with
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FIGURE 6. Accuracies of the same methods described in Table 1 and 2 at varying of the quantization factors q1i to be predicted. The values are
averaged over all the QF1/Q1.

FIGURE 7. Accuracies of the proposed method at varying of training/test patch size. The values are averaged over all QF1/Q1.

Photoshop’s custom tables (datasets 3 and 4) because the
related implementation makes assumptions about standard
tables employed in the first compression.

As reported in Table 1, 2 and Fig. 6 the proposed approach
outperforms state-of-the-art methods in almost all scenarios
(values close to 0 are due to the assumptions of some meth-
ods, e.g., QF1 < QF2). Note that the regularization step

improves the results in almost all cases. Moreover, although
the standard matrices scenario (Table 1) is the one considered
by Tondi et al. [30] to train their CNN, the proposed method
outperforms it (0.71 vs. 0.59 for QF2 = 90 and 0.45 vs. 0.37
forQF2 = 80) in almost all cases. Results reported in Table 2
involving Photoshop’s custom tables demonstrates that the
proposed method, differently than other Machine Learning
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TABLE 3. Accuracies of the proposed approach for generalizing property demonstration (Our Reg. denotes the regularized version). It is worth noting
that, given a patch size N × N , the same dataset was employed as reference (i.e., RAISE N × N) for both input (i.e., RAISE N × N , UCID N × N).

TABLE 4. Accuracy obtained employing different DCT implementations for JPEG compression. It is worth noting that the different implementation are
referred to the test set; the reference dataset is the same employed in the previous tests (i.e., RAISE double compressed images with DCT Pillow
implementation).

solutions, does not depend on a specific class of quantization
matrices.

To further confirm the effectiveness of the proposed
solution, additional experiments at varying of patch size
have been performed. Specifically, three double compressed
training datasets obtained from RAISE with 128 × 128,
256×256, 512×512 patches have been generated. Moreover,
test datasets considering the aforementioned patch sizes with
standard and custom tables (Photoshop) for Q1 and QF2 ∈
{80, 90} have been also created. In a nutshell we have consid-
ered the same conditions of tests already seen before, but with
more informative patches. As can be seen from Fig. 7, due
to the higher amount of information, bigger patches achieve
higher accuracy in all the considered scenarios (standard and
PS quantization tables). These results confirm the studies
performed in [36] to correlate informative content of the patch
and estimation accuracy.

B. GENERALIZING PROPERTY
Park et al. in [32] collected a dataset of JPEG quanti-
zation matrices employed in real scenarios. The collec-
tion consists of 1170 different matrices: 1070 custom and

100 standard JPEG quantization tables. This collection can
be then exploited to conduct a new series of tests to eval-
uate the generalization capability of the proposed solution.
Specifically, the matrices with q1i ≤ q1max = 22 and
i ∈ {1, 2, . . . , 15} (see Section VI) have been selected, sorted
by the average of the first 15 quantization factors and then
split into three sets of 291 elements (Low, Mid, High). These
sets of tables are then employed to create 9 combinations of
double compressions. In our test four different patch sizes
(64×64, 128×128, 256×256, 512×512) have been consid-
ered. For each combination of double compression, the quan-
tization tables (Q1 and Q2) are selected randomly from the
291 available in the corresponding set (Low, Mid, High). The
results obtained on these tests are reported in Table 3. They
clearly show that our method maintains good accuracies on
all the tested challenging scenarios demonstrating to achieve
same results even when different datasets are employed
(e.g., RAISE as reference and UCID as test dataset). The
better results with UCID [37] dataset are explainable again
with the quantity of information inside it: a 256× 256 patch
extracted from a UCID [37] image (512×384) has a quantity
of information (of course measured by DCT overall energy)

73116 VOLUME 9, 2021



S. Battiato et al.: FQE by Robust Data Exploitation Strategy of DCT Coefficients

FIGURE 8. Accuracy of tests conducted on different test sets grouped and sorted by Laplacian β, shown on a logarithmic scale. It is worth noting
that, given a patch size N × N , the same dataset was employed as reference (i.e., RAISE N × N) for both input (i.e., RAISE N × N , UCID N × N).

greater than a 256× 256 patch extracted from a RAISE [33]
image (≈5000× 3000).

C. CROSS DCT IMPLEMENTATION ANALYSIS
Recent works in literature analyse the effect of different Dis-
crete Cosine Transform implementations in the final JPEG

image generation [38]. To further validate our method a cross
JPEG implementation test was conducted through the use of
different types of DCTs. We employed Pillow and libjpeg-
turbo2 to compress the input images. The test’s dataset is
composed by 2000 RAISE images cropped 64 × 64 and

2https://github.com/libjpeg-turbo/libjpeg-turbo/
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compressed two times with the aforementioned JPEG imple-
mentations. The results in Table 4 confirmed the over-
all robustness of the method also w.r.t different DCT
implementations.

D. CROSS PATCH SIZE ANALYSIS
It is worth noting that in all the experiments performed in the
previous sections, once a specific patch size N ×N has been
chosen for the considered scenario, both training and test sets
have been generated starting from patches of the same size.
As already shown in Fig. 7 and Table 3 bigger patch sizes,
due to the higher information content, provide better results.
In this section we try to verify if it is possible to exploit, also
partially, information contained in patches of different size
with respect to the analyzed ones. Specifically cross patch
size tests considering 8 datasets built from RAISE and UCID
image collections have been conducted. Every test was done
employing 1000 random images, compressed two times with
QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 90
and patch sizes 64×64, 128×128, 256×256, 512×512. Test
images have been then compared with four different training
datasets obtained from RAISE images employing double
compression with Q1 and Q2 constant quantization matrices
and patch sizes 64× 64, 128× 128, 256× 256, 512× 512.

TABLE 5. Accuracies obtained for every couple test/training with RAISE
as test dataset.

As reported in Table 5 and 6, training datasets built
from higher patch size work better. To understand how
these improvements are related to the information content,
the accuracy of AC coefficient estimation in all the con-
sidered scenarios (i.e., all combinations of training and
test patch sizes) at varying of β (eq. (1)) was studied.
Although exploiting training datasets with bigger patch sizes
always provides better results (see Fig. 8), the gain in terms
of accuracy is higher when low β values are considered
(i.e., lower informative patches). This behavior is more evi-
dent in the experiments conducted on RAISE dataset (with
respect to UCID) due to the different resolution of the original
images used to extract patches. AC distributions with low
β values have almost all bins close to zero and is pretty
difficult to discriminate among ones obtained with different
first quantization factors. This is even worse when a limited
number of elements are used to build these histograms. Such
as example histograms generated from 64×64 and 512×512

TABLE 6. Accuracies obtained for every couple test/training with UCID as
test dataset.

patches have been obtained considering 64 and 4096 elements
respectively. Higher patch sizes allow then, especially when
the information content is limited, to better discriminate sim-
ilar distributions.

VII. CONCLUSION
First Quantization Estimation (FQE) is an important task in
forensic investigation activities. We designed a method able
to estimate the first quantization factors for JPEG double
compressed images. One of the main contributions of the
proposed work was the way we deal with the big amount
of data avoiding overfitting. Specifically, constant matrices
Mi permitted to uncouple {q1, q2} and the use of m and
β, limiting the range of candidate histograms to be com-
pared, makes the execution time acceptable. Experimental
tests showed the goodness of the technique outperforming
state-of-the-art results whereas the use of KNN (with k = 1)
to learn the distribution has been effective. The general-
ization of the proposed method was demonstrated by the
experimental results which shown clearly how, in the aligned
scenario, the method works better than other solutions for
both custom and standard tables, becoming a viable solution
to be employed in real-case scenarios. Finally the results
with different image sizes and the analysis conducted on
their informative content suggested new points of view in
order to improve and formalize the proposed method. The
formalization would lead to possibility to further reduce the
computational time and to conduct analysis about different
inputs like resized and non-aligned images and different tasks
like tampering detection/localization.
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