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A B S T R A C T

Magnetic resonance imaging is a fundamental tool to reach a diagnosis of multiple sclerosis and monitoring its
progression. Although several attempts have been made to segment multiple sclerosis lesions using artificial
intelligence, fully automated analysis is not yet available. State-of-the-art methods rely on slight variations
in segmentation architectures (e.g. U-Net, etc.). However, recent research has demonstrated how exploiting
temporal-aware features and attention mechanisms can provide a significant boost to traditional architectures.
This paper proposes a framework that exploits an augmented U-Net architecture with a convolutional
long short-term memory layer and attention mechanism which is able to segment and quantify multiple
sclerosis lesions detected in magnetic resonance images. Quantitative and qualitative evaluation on challenging
examples demonstrated how the method outperforms previous state-of-the-art approaches, reporting an overall
Dice score of 89% and also demonstrating robustness and generalization ability on never seen new test samples
of a new dedicated under construction dataset.
1. Introduction

Multiple Sclerosis (MS) is a chronic inflammatory demyelinating
disease of the Central Nervous System (CNS) [1], with neuropathologic
features characterized by focal areas of inflammation with myelin and
axonal loss. MS lesions may be detected in vivo by Magnetic Resonance
Imaging (MRI) in different areas of the brain and the spinal cord and
they accumulate over time [2]. Selective localization of lesions on
MRI (periventricular, cortical/iuxtacortical, brain stem/cerebellar, and
spinal cord) is also relevant for the diagnosis of MS and detection of
new or enlarging lesions at follow-up, and is routinely used in the eval-
uation of therapeutic response and disease progression [3,4]. Manual
annotation of MS lesions on MRI scans is a time consuming task and
requires substantial efforts by specialized experts. Moreover, inter and
intra operator variability is unavoidable and may affect accuracy and
reproducibility of lesion segmentation [5]. Thus, there is an increasing
interest today in automation of MRI reading and evaluation to avoid the
bias introduced by human raters and to make this information available
for routine clinical practice [6]. Typically, the longitudinal brain MRI
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protocol involves distinct kinds of sequences, which generate different
types of images that vary according to the contrast of the various
tissues that compose the brain. The most common MRI sequences
used to detect MS lesions are the Fluid Attenuated Inversion Recov-
ery (FLAIR), T1-weighted, T2-weighted, and PD-weighted images. In
the T1-weighted sequence, white matter appears lighter than gray
matter, and cerebrospinal fluid (CSF) appears dark. In the T2-weighted
sequence, the white matter appears darker than the gray matter, while
the CSF appears bright. FLAIRs images are like T2s, except that CSF is
suppressed. MS lesions appears hypointense in T1-w and hyperintense
in T2-w, PD-w and FLAIR sequences, with respect to normal tissue
intensities. Lesions are most detectable in the FLAIR images, where they
appear hyperintense and usually well distinguishable from surrounding
tissues. Fig. 1 shows four MRI brain images for each different acqui-
sition types with MS lesions (MS lesions are pointed by red circle).
In our method, similarly to other works in the field [7–9], the most
discriminating MRI sequence (FLAIR) was exploited.
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Fig. 1. Sample axial MRI images of the brain of an MS patient in each modality of
acquisition showing MS lesion in (a) Flair, (b) T2-weighted, (c) T1-weighted and (d)
PD-weighted. Red circles highlight lesions in the different modality of acquisition.

The starting point of our study is one of the most widely used
networks in the state of the art for this purpose, the U-Net archi-
tecture [10], which is widely used not only in medical image seg-
mentation, but also in general segmentation tasks. In this work, an
extended Fully Convolutional DenseNet (FC-DenseNet) [11] for MS
lesion segmentation is proposed; it follows the U-Net structure [10]
with the addiction of Long Short-Term Memory (LSTM) layer and
extensive usage of attention mechanisms to detect FLAIR-w MS lesions
in longitudinal brain MRI. Attention [12] is a technique that aims to
mimic the cognitive attention of humans by enforcing neural networks
to pay greater attention to most informative input data and ignore
the rest. Attention mechanisms have been shown to be effective in
capturing global dependencies and have become an integral part of
semantic segmentation tasks [13]. The FC-DenseNet has been properly
extended with an attention mechanism based on the usage of squeeze
and attention blocks [14], in order to accentuate the group of pixel
from the same classes employing different spatial scales. Squeeze and
Attention blocks (SA) represent a component that can be easily incor-
porated within the backbone, able to improve network performance
through operations applied on both local and global level. Moreover,
the space propagation of the lesions with a similar shape between
adjacent images suggested to introduce a Long short-term memory
(LSTM) layer [15]; it permits to preserve spatial information between
longitudinal axis of data.

The performance of the proposed architecture was evaluated em-
ploying a cross-validation scheme in patients with lesions on follow-up
scans. The architecture described in Fig. 4 represents the best results of
some tested models described in the ablation studies (Section 4.5).

The training phase of a Deep Neural Network architecture typically
requires a large amount of labeled images [16]. A relevant issue in
MRI lesions segmentation is the presence of just few small example
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in each dataset available [6] and the lack of homogeneity between
different repositories, due to the usage of different scanners and/or
acquisition protocols. This makes the segmentation challenging, rais-
ing concerns about the results obtained from the different methods,
which are difficult to compare and generalize to other datasets. For
these reasons, we are actually working on the generation of a new
labeled MRI dataset as part of the ‘‘In Silico World (ISW): Lowering
barriers to ubiquitous adoption of In Silico Trials’’ (Grant agreement ID:
101016503, PROGRAMME: H2020-EU.3.1. - SOCIETAL CHALLENGES
- Health, demographic change and well-being, CALL: H2020-SC1-DTH-
2018-2020). It will be larger than the actual ones, with heterogeneous
samples (patients with different stages of disease) and with labeled MS
lesions validated by employing different experts. The proposed method,
its future extensions and the under construction labeled dataset will be
included into the Universal Immune System Simulator (UISS). UISS is
a multi-compartment, multi-scale, polyclonal, stochastic, and patient-
specific agent-based model (ABM) that is able to simulate immune
system dynamics both in physiological and pathological scenarios [17].
UISS simulator framework has been extended to model MS pathogene-
sis and its interaction with the host immune system [18], taking into ac-
count both cellular and molecular entities. Particularly, UISS- MS takes
into account B cells, T helper (CD4+ T cells), T cytotoxic (CD8+ T cells),
conventional dendritic cells (DCs), macrophages (M), plasma B cells
(P cells), immunocomplexes (IC), oligodendrocytes (ODC), interferon-
gamma (IFN-G), interleukins of type x (IL-x), transforming growth fac-
tor beta (TGFB), myelin basic proteins (MBP), immunoglobulins class G
(IgG) and chemokines (as generic chemokines) [19]. For each modeled
patient, the age at MS onset, baseline MRI lesion load, oligoclonal bands
status, and the administered treatment are usually considered.

A limit of the current UISS-MS framework is that only qualitative
data about MRI lesion load have been inserted [18]. For this reason,
the quantitative data about the MRI lesion load obtained with the
framework here proposed will be integrated into the UISS framework,
with the aim to represent and predict the disease progression of MS
patients as well as to more realistically simulate the immune response
to specific treatments.

The remainder of this paper is organized as follows. Section 2
resumes the state-of-the-art of MS lesions segmentation while Section 3
explains the employed dataset and the proposed method. Experimen-
tal results with state-of-the-art comparisons and ablation studies are
reported in Section 4, whereas Section 5 concludes the paper.

2. State of the art

In recent years, various Artificial Intelligence (AI) methods based
on deep learning have been proposed for the classification, detection,
and segmentation of health-related conditions from medical images.
For example, [19] utilizes deep learning methods for the classification
of stroke in MR images, whereas [20] compares the classification per-
formance of several deep learning architectures in ultrasound images
for early diagnosis of carotid artery disease. Moreover, deep learning-
based architectures have been utilized for the segmentation of various
organs and tissues in medical images, including autoimmune disease
segmentation using histopathological images [21], lung segmentation
for Covid-19 prediction [22–24] or automatic segmentation of MS
lesions from MRI scans; however, the results obtained are still far from
those generated by manual segmentation. Furthermore, semi-automatic
or automatic approaches have proven to be sensitive to MRI variability
and different acquisition modalities, leading to a loss of accuracy. The
results to date are still distant from those of human experts despite the
enormous efforts. Recently, MS lesion segmentation methods have been
classified into main categories, most of which include unsupervised,
supervised and deep learning-based methods. Regarding supervised
approaches, the authors of [25] proposed a method where lesions
were segmented by applying an intensity threshold to the FLAIR im-
age. In [26] a combination of a fuzzy classification method with an
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edge-based method is used, and the segmentation was obtained apply-
ing thresholding and a false-positive reduction technique. Regarding
unsupervised approaches, [27] proposed an algorithm for MS lesion
detection based on the intensity distribution of the three different
tissues to detect lesions. In [28], the authors used a probabilistic model,
Gaussian Mixture Model (GMM) to delineate lesion contours. The work
in [8] proposed a framework by exploiting a Bayesian classifier and
Markov Random Field (MRF) model to compute the a-priori probability
for each tissue class. Most of the latest works exploit deep neural
network-based methods. In particular, most of the published works
employ methods based on Convolutional Neural Network (CNN) and U-
Net architectures. In [29], the authors proposed an automated pipeline
for serial analysis of MS lesions using FLAIR scans, relying on cross
sectional segmentation of lesions in white matter. In [30], a multiclass
FCNN model is proposed for brain tissue segmentation (gray matter,
white matter, and cerebrospinal fluid) and MS lesions in T2-W scans.
A framework for FLAIR segmentation is proposed in [31] by training
two CNNs on MSSEG-2016 dataset in the axial, coronal, and sagittal
directions. In [32] the authors use a multimodal 2D U-Net, encoding
the different image modalities in separate downsampling channels,
while [33] propose a combination of 3D networks for a spatially
distributed strategy robust to domain-shifting.

The employing of attention has shown interesting improvements in
some fields of medical image segmentation. In a recent work [34], seg-
mentation of MRI FLAIR and T2 images is performed using a modified
U-Net and Attention U-Net, proposing the fusion of the masks ob-
tained from a better segmentation of Flair and T2. Another study [35]
proposed a new dense residual U-Net model that leverages attention
gate and channel attention techniques to improve the performance of
automated MS lesion segmentation in MRI, while the authors in [9]
propose a CNN based on two-paths architecture with the addition
of a attention-driven interaction block between them able to share
information between two different time points. Recent works demon-
strated how the right use of attention in MS domain could significantly
improve the results. The authors in [6] summarize recent researches on
automated MS diagnosis based on Deep Learning (DL) and AI analyzing
the features exploited, the preprocessing techniques employed and the
challenges faced by published works, in part exploited in the current
proposal.

3. Methodology

3.1. Image dataset

The dataset employed in our method is a subset of the ISBI2015
challenge dataset; it is a public available set of images presented at
the Longitudinal MS Lesion Segmentation Challenge [36], organized in
conjunction with the ISBI 2015 conference. The full dataset is composed
of 19 patients MRI scans, acquired at multiple time points on a 3.0 T
MR scanner, but only 5 patients are available with the corresponding
segmentation mask. Each patient presents two different segmentation
masks, produced by two expert human raters; it is important to note
how in many cases the masks are different, which explain the difficult
of the task also in presence of MS expert. The 14 patients without
segmentation masks were originally used to validate the challenge
algorithm but were discarded in our case for obvious reasons. An
example of image belonging to the dataset and its relative mask is
shown in Fig. 2.

The selected 5 patients were acquired at different time points: 4
of them have 4 time points longitudinal scans, where the last has 5
time points, for a total of 21 different acquisitions; the time interval
between two consecutive acquisitions is approximately 1 year. To note
that the course of multiple sclerosis is highly variable and follow-
up scans do not necessarily correspond to disease progression, as MS
lesions may appear at different times and in different parts of the brain.
Each acquisition contains the original MR images, the images after
3

Fig. 2. An example of FLAIR image from the ISBI-2015 dataset (a) with the
corresponding mask annotated by rater 1 (b).

co-registration (geometric alignment of the images), brain extraction
and non-uniformity correction, and the masks representing the MS
lesion. Each scan contains different images sequences: T1-weighted,
T2-weighted, PD-weighted, and FLAIR. To assess the stability of the
model, we performed our experiments by evaluating our method only
on the masks labeled by rater 1. To perform our experiments, only
the FLAIR images were employed because MS lesions in white matter
appear hyperintense and are more visible than other types of sequences;
every FLAIR sequence is composed of 181 images of size 181 × 217.

We are currently generating a dataset containing MRI scans, ac-
quired as part of project ‘‘In Silico World (ISW): Lowering barriers to
ubiquitous adoption of In Silico Trials’’, with MS lesions labeled by two
experts. This dataset will contain scans of numerous patients acquired
at multiple time points; MR images were acquired by a 1.5 T scanner
(Ingenia, Philips MR Systems, Release 4.1.3.2, Best, The Netherlands)
under a regular maintenance program and sequences employed to
reveal MS lesions were: 3D T2-FLAIR, Axial T2-FSE and 3D T1-gradient
echo. An additional test of the proposed method with an item of the
future dataset was carried-out and presented in Section 4.4. The study
was approved by the corresponding Hospital Ethics Committee and all
patients gave their informed consent.

3.2. Preprocessing

State-of-the-art applied different image preprocessing methods, as
co-registration [37], intensity correction [38,39], skull-stripping
[40,41]. To avoid processing absolutely useless or marginal informa-
tion, the removal of black images on terminal parts of each scan, where
lesions are not present is usually performed. For the same reason,
Hashemi et al. in [34] applied a removal of the black part outside
the brain, where is not possible to find lesion areas, also in images
containing lesions, in order to give only ‘‘active’’ information to the
network. Although the action could seem obvious, the removal of these
areas improves the results significantly.

Fig. 3 shows an example of the aforementioned preprocessing: it
was applied in all the considered items of our method reducing the
input images at 160 × 160 pixels. This action is also useful to overcome
the imbalance inside the ground-truth masks (Fig. 2(b)): our goal is to
identify the lesions, which are identified by white pixels, while the rest
of the image is identified by black pixels (a binary classification). It
is evident how in the mask image (Fig. 2(b)) the number of pixels of
white area (target) is sensibly less than black ones enforcing the model
to better predict dominant areas. Removing the whole black masks and
resizing the image also allow, as a side effect, to significantly reduce
the overall training time.

After the above-mentioned preprocessing steps, we obtain images
with corresponding square masks of size 160 × 160, that constitute the
input to the network.
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Fig. 3. Preprocessing performed on the FLAIR slices. First the entire black masks were
removed, then the edges were cropped; the resulting image from the preprocessing
steps has dimensions 160 × 160.

3.3. Proposed model

In recent years Medical Imaging researchers demonstrated how U-
Net and its customized architectures [10] provided effective results in
various scenarios. The capacity of U-net to produce detailed segmenta-
tion maps, using a very limited amount of data, makes it particularly
helpful; it assumes relevance in the context of medical imaging since
access to large amounts of labeled data is very limited.

The state-of-the-art employed U-Net in medical image segmentation
adding some customization to enhance the results; in our case squeeze
and attention block [14], as reported in next sections, sensibly improve
the results on MS lesion segmentation. Before introducing the overall
architecture, the main blocks added to our segmentation network will
be described below.

Squeeze-and-attention module Squeeze-and-attention (SA) modules
[14] attempt to emphasize channels that contain informative features
and suppress the non-informative ones. This module performs a re-
weighting technique that pay attention locally and globally; locally
because the convolutional operations are performed in a small pixel
neighborhood, while globally they selects which image feature maps to
focus on to perform segmentation. SA extends the feature recalibration
operations performed by the squeeze-and-excitation (SE) modules [42]
to not apply fully-squeezed operation to spatial information.

Convolutional LSTM Convolutional LSTM [15], combines the advan-
tages of RNN and CNN architectures. It introduces convolutional layers
in place of fully connected layers in an LSTM to enable more struc-
ture in the recurrent levels. In medical image segmentation, spatial
information is essential to be able to reconstruct an entire area. For
this reason, a convolutional LSTM uses the convolution operator in
recurrent connections to learn the spatial features of adjacent images.

Fig. 4 shows the proposed MS Lesion segmentation architecture. It
is build starting from a Fully Convolutional Densely Network (known
as Tiramisú network [11]) based on a modified U-Net structure [10].
As mentioned before, compared to the conventional U-net architectures
for MS lesion segmentation [43], squeeze and attention blocks to both
the downsampling and upsampling path were added to emphasize the
more informative feature maps; also a unidirectional convolutional
LSTM [15] was inserted in the bottleneck, in order to catch spatial
correlation of sequentially axial slices. These slices are processed in-
dependently in the first part of the net (convolutional operations)
and combined in the network bottleneck to produce the final output.
In particular, the segmentation result of the central slice is obtained
providing to the network an input with the same slice and the two
adjacent ones, (previous and next): it is easy to observe how lesions are
propagating over the space with a similar shape. We chose the number
of 3 slices since the MS lesion is more likely to be within this spatial
sequential and because in a greater sequence the lesion could lead not
only to considering lesions with different structure, but also increase
the training time.
4

Table 1
FC-DenseNet + SA + C-LSTM layers for FLAIR MS lesion segmentation: every row
shows the position, the number of times usages and how it is composed. DenseLayer
and conv_block are complex blocks, explained in the last two rows.

Position Layer Composed by # layers

Downsampling Conv2d – 1

Downsampling DenseBlock

DenseLayer

5
DenseLayer
DenseLayer
DenseLayer
DenseLayer

Downsampling SqueezeAttentionBlock

AvgPool2d

5conv_block
conv_block
Upsample

Downsampling TransitionDown

BatchNorm2d

5
ReLU
Conv2d
Dropout2d
MaxPool2d

Bottleneck DenseBlock

DenseLayer

1
DenseLayer
DenseLayer
DenseLayer
DenseLayer

Bottleneck ConvLSTM Conv2d 1

Upsampling TransitionUp ConvTranspose2d 5

Upsampling DenseBlock

DenseLayer

5
DenseLayer
DenseLayer
DenseLayer
DenseLayer

Upsampling SqueezeAttentionBlock

AvgPool2d

5conv_block
conv_block
Upsample

Upsampling Conv2d – 1

Exit Softmax – 1

DenseLayer

BatchNorm2d
ReLU
Conv2d
Dropout2d

conv_block

Conv2d
BatchNorm2d
ReLU
Conv2d
BatchNorm2d
ReLU

Total parameters = 13,242,782

The architecture consists of a downsampling path composed of a
convolutional layer and five sequences composed of: a dense block,
a squeeze-attention block and transition down blocks. The upsam-
pling path is symmetrical to the downsampling one and also each
couple upsampling/downsampling block is concatenated through Skip
connections.

The proposed network consists of over 400 levels. As it is not
possible to include a table listing all the levels, these are described using
the grouping in Table 1. As mentioned earlier, the network takes FLAIR
images as input because lesions are more visible in this modality, gener-
ating the lesion segmentation mask as output. Within the architecture
each slice is shown in grayscale, in which every pixel value contains
only information on intensity. The group of three slices were passed
through a standard convolutional layer, which is needed to increase
the size of feature maps. Then they go through the downsampling path,
also called encoder, consisting of a sequence of dense blocks, squeeze-
attention blocks, and transition down blocks. In the downsampling
process, the spatial resolution of the images was gradually reduced and
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Fig. 4. Architecture of the FLAIR MS lesion segmentation model. This model takes as input a sequence of 3 FLAIR slices and returns as output the corresponding segmentation
map.
the number feature maps were gradually increased. The advantage of
applying squeeze-attention modules is to emphasize channels that con-
tain informative features and suppress all other non-informative ones.
Specifically, it is demonstrated that the SA block introduces a pixel-
group attention mechanism with a convolutional attention channel,
which allows the network to selectively focus on the most significant
groups of pixels in the input image, while excluding other groups. This
is achieved through spatial attention, where neighboring pixels of the
same class are grouped together and treated as a single unit during
processing, allowing for pixel-wise prediction [14]. In particular, in
the case of multiple sclerosis lesion segmentation, it is important to
consider the relationships between pixels in a group, as lesions often
have a distinct shape and structure. In this path, the output feature
maps from each transition down level are concatenated with the output
feature maps of each squeeze and attention level, and used as the input
of the next level. The downsampling path is followed by the bottleneck,
which is typically characterized by a sequence of levels that process the
slices when they have the lowest possible spatial resolution. It consists
of a dense block and a unidirectional convolutional LSTM layer. A 2D
convolutional approach was chosen instead of 3D, as the dataset em-
ployed had a limited number of samples available. By incorporating the
LSTM layer, the network can capture the spatial dependencies between
adjacent slices, leading to better feature representations and improved
accuracy in the final output, thereby focusing on the sequentiality of
the scans instead of giving an entire scan per single step. By doing
so, the sequential task has many more samples than the 3D task. At
the end of the bottleneck there is the upsampling path, also called
the decoder, which is symmetrical to the downsampling path and is
useful for recovering the input spatial resolution that is lost during the
previous path. The spatial resolution of the images is then gradually
increased and the number of feature maps is gradually reduced. The
main characteristics of the upsampling path is the presence of skip
connections, which concatenate the future maps at the exit of each
Transition Up blocks with those that have the same resolution coming
from the downsampling path to create the input of the next layer. The
skip connection were useful to recover spatially detailed information
lost during the downsampling path. At the end of the upsampling path,
there is a convolutional layer and the softmax which encodes for each
pixel a probability for each possible class. Thus, the output of the model
is the segmentation mask of the central slice of the sequence.
5

4. Experiments and results

4.1 Evaluation metrics

The evaluation of the model was done comparing the predicted seg-
mentation masks with the reference ones that, as mentioned previously,
were chosen by only one of the experts as ground truth.

As evaluation metrics, Dice score, sensitivity, specificity, Extra Frac-
tion, Intersection Over Union (IOU), Positive Predictive Value (PPV)
and Negative Predictive Value (NPV) were used. The Dice score [44] is
defined in Eq. (1),

𝐷𝑆𝐶 = 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(1)

where TP, FP and FN denote the number of True Positive, False Positive
and False Negative pixels, respectively. Dice score is a metric used to
measure the similarity between two classes, widely used in medical
image segmentation.

The Sensitivity is defined in Eq. (2),

𝑆𝐸𝑁𝑆 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

Sensitivity measures the number of positive voxel that are properly
identified.

Specificity is defined in Eq. (3),

𝑆𝑃𝐸𝐶 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(3)

Specificity measures the number of negative voxel that are properly
identified.

Extra Fraction (EF) is defined in Eq. (4),

𝐸𝐹 = 𝐹𝑃
𝑇𝑁 + 𝐹𝑁

(4)

Extra Fraction measures the number of voxels segmented that are not
in the reference segmentation.

Intersection Over Union (IOU) is defined in Eq. (5),

𝐼𝑂𝑈 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

(5)

Intersection Over Union measures the number of voxels segmented that
quantifies the degree of overlap between two region.
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Fig. 5. Dice (first column) and Loss (second column) produced after 200 epochs by Fold1 (a, b), Fold2 (c, d), Fold3 (e, f), Fold4 (g, h), and Fold5 (i, j). The best model was selected
based on the performance of validation set. The green line indicates the peak performance in term of Dice Score on validation set.
Positive Predictive Value (PPV) is defined in Eq. (6),

𝑃𝑃𝑉 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(6)

Positive Predictive Value measure the number of positive voxel that are
true positive results.
6

Negative Predictive Value (NPV) is defined in Eq. (7),

𝑁𝑃𝑉 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑁

(7)

Negative Predictive Value measure the number of negative voxel that
are true negative results.
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Fig. 6. Results of our approach for cases trained with FLAIR images for fold: Fold2. The image shows (a), (e), (i) the original slices, (b), (f), (j) the ground truth for each slice,
(c), (g), (k) the predictions of our model, (d), (h), (l) false-positive pixels (in red) and false-negative pixels (in green), for slices taken from three different regions of the brain,
respectively.
4.2 Experimental setup and hardware specification

As explained in Section 3 the experiments were performed em-
ploying images obtained after the pre-processing phase, removing the
black areas. Given the low number of patients (only 5) and scans
(only 21), the tests were carried out through a cross-validation strategy
considering 5-fold, with 17 scans to train the network, 3 scans used as
validation set and a scan to test it. As done by Hashemi et al. in [34]
part of patient’s scans were employed during training phase while the
remaining ones for testing.

• Fold1 includes a total of 1119 images as a training set, 197 images
as a validation set and 70 images as a test set (patient 1 at T4).

• Fold2 includes a total of 1119 images as a training set, 183 images
as a validation set and 84 images as a test set (patient 2 at T4).

• Fold3 includes a total of 1119 images as a training set, 200 images
as a validation set and 67 images as a test set (patient 3 at T4).

• Fold4 includes a total of 1136 images as a training set, 208 images
as a validation set and 42 images as a test set (patient 4 at T4).

• Fold5 includes a total of 1111 images as a training set, 225 images
as a validation set and 50 images as a test set (patient 5 at T4).

The proposed approach was implemented in Python language (ver-
sion 3.9.7) using Pytorch [45] package. All experiments were done
on a NVIDIA Quadro RTX 6000 GPU. The network was evaluated
using the Dice loss function, which considers both local and global
7

information. Network training was performed for 200 epochs well
beyond the average converging rate, through the usage of Stochastic
Gradient Descent (SGD) [46] as optimizer with an initial learning rate
of 1𝑒−4, a weight decay equal to 1𝑒−4 and a batch size fixed at 4. Fig. 5
shows the Dice and loss curves obtained during training considering
the various folds as configurations. The best model was then selected
to perform all tests based on the highest Dice value achieved by the
validation set for each fold. The training computation time for 200
epochs was approximately 20 h. No data augmentation was applied
during the training process. To demonstrate the absence of overfitting,
a subsequent test was performed by applying random transformations
to the training data, including flipping and affine transformations of
the images. This experiment helped to ensure the model’s convergence
while avoiding overfitting. The results obtained from the additional
training are very similar to those reported in Fig. 5. This suggests that
the model’s performance is robust.

4.3 General results

To properly evaluate the performances of the proposed approach
a set of tests were conducted, in which the employed folds contain
multiple combinations of the data.

The averages ± Standard Deviation (SD) of all metrics obtained
in the cross-validation test folds are reported in Table 2. From the
comparison of all the results trained in the different folds, it can be
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Table 2
Average of the evaluation metrics for the proposed approach in the different folds for the test data. The last row shows the average among all folds (Average ± SD).

Fold Dice Sensitivity Specificity IOU EF PPV NPV Accuracy
ID Score

1 0.8448 0.8601 0.9983 0.7314 0.0016 0.8301 0.9987 0.9971
2 0.8900 0.8679 0.9987 0.8019 0.0012 0.9133 0.9980 0.9968
3 0.8855 0.9071 0.9995 0.7946 0.0004 0.8650 0.9997 0.9992
4 0.8101 0.7675 0.9997 0.6808 0.0002 0.8577 0.9995 0.9992
5 0.8190 0.8442 0.9992 0.6936 0.0007 0.7953 0.9994 0.9987

Mean 0.84 ± 0.03 0.84 ± 0.05 0.99 ± 5e−4 0.74 ± 0.05 8e−4 ± 5e−4 0.85 ± 0.04 0.99 ± 7e−4 0.99 ± 1e−3
Table 3
Mean dice obtained from the proposed approach, compared with Hashemi et al. [34], Feng et al. [47], Abolvardi et al. [48], Salem et al. [49],
Aslani et al. [50], Afzal et al. [51], Roy et al. [52], Zhang et al. [43], Raab et al. [32] Kamraoui et al. [33], Sarica et al. [35]. The value
in bold indicates the obtained best value; to note that also our mean value overcomes the state-of-the-art. Although some of these methods
proposed solutions using all or some of MRI modalities, we report the results of all of them as done by Hashemi et al. [34] in Table 8.
Papers Method Dice score PPV Sensitivity

Hashemi et al. [34] Attention U-Net 0.80 0.82 0.79
Hashemi et al. [34] U-Net 0.81 0.84 0.79
Feng et al. [47] 3D U-Net 0.68 0.78 0.64
Abolvardi et al. [48] 3D U-Net 0.61 – –
Salem et al. [49] 2D U-Net 0.64 0.79 0.57
Aslani et al. [50] CNN 0.76 – –
Afzal et al. [51] CNN 0.67 0.9 0.48
Roy et al. [52] CNN 0.56 0.6 –
Zhang et al. [43] FC-DenseNets 0.64 0.90 –
Raab et al. [32] 2D U-Net 0.77 – –
Kamraoui et al. [33] 3D U-Net 0.67 0.84 –
Sarica et al. [35] Dense-Residual U-Net 0.66 0.86 –
Our (Mean) FC-DenseNet + SA + C-LSTM 0.84 0.85 0.84
Our (Fold2) FC-DenseNet + SA + C-LSTM 0.89 0.91 0.86
concluded that the model achieves the best result in terms of Dice score
in Fold2 (89%). In general, high values are achieved for all metrics and
the results being very comparable between all folds.

It is possible to appreciate visually the results of the proposed
approach, in the test set, in Fig. 6, where is possible to observe the
segmentation results on slices of the same patient extracted from three
different regions of the brain. Fig. 6 shows slices of the same subject (a),
(e), (i), the ground truth segmentations (b), (f), (j), the segmentations
obtained by the proposed approach (c), (g), (k), the false positive and
false negative pixels distincted in red and green pixels respectively in
(d), (h), (l).

As can be observed, the predicted lesions mask is very similar
to the ground-truth mask, so the proposed approach segments most
of the lesions with good accuracy. False-positive and false-negative
pixels mask, confirms how most of the Flair MS lesions were correctly
detected by the model.

The proposed approach has been compared with recent state-of-the-
art solutions based on 2D/3D U-Net for MS lesion segmentation. The
comparison was done through the mean Dice score between methods
on ISBI2015 dataset. Table 3 shows the results of state-of-the-art, our
results achieved in the best fold (Fold2 in our case) and our mean
calculated considering all the involved folds.

State-of-the-art methods used for sake of comparisons are the fol-
lowing: [33,47,48] (3D U-Net architecture), [32,35,49] (2D U-Net ar-
chitecture). Also we included [50–52] based on a CNN model while
[43] make use of a Tiramisú network by combining slices in the three
anatomical planes to capture both global and local contexts. The results
of Table 3 show how our framework improves the results of the state-of-
the-art by about 7 of Dice Score. The results obtained from the method
proposed by [34] are the most similar to ours; [34] making use of two
segmentation networks for MS lesions, an Attention U-Net and a U-Net,
and presents the results obtained with both networks on the different
MRI acquisition modalities.

The comparison between our results and [34] are referred to FLAIR
images achieved considering in both the results of the patient corre-
sponding to our Fold2 as test. Furthermore, it is possible to note how
the use of attention mechanisms does not give advantages to [34],
8

as Attention U-Net has worse results than simple U-Net. The results
obtained with our method in Fold2 exceed the results obtained by [34]
for both networks.

4.4 Additional test

As previously mentioned, we are in the process of building a new
dataset containing FLAIR scans of multiple sclerosis patients with
expert-labeled MS lesions.

To evaluate the performances of the proposed method (with the
model trained on the ISBI-2015 dataset) an additional test was done
employing MR FLAIR images from three patients of our in progress
dataset. As depicted in Fig. 7, the ground truths of three patients
(P1, P2, and P3) were overlaid with the corresponding segmentations
obtained by our model and the resulting masks. The high number of
false negative pixels indicates that lesion contouring is the task where
our network is less accurate. The larger are the lesions the less accurate
is the contouring. Table 4 reports individual fold and average Dice
Scores from each patient. Dice Score performances obtained by our
method are somehow different when the results from training dataset
are compared with the test scans, but the mean Dice Score of 0.7730
achieved for P1 represents a satisfying result in terms of accuracy
and lesion segmentation. This discrepancy may be due to differences
between acquisition scanners, as a 3.0 T scanner was used for the
training images (ISBI-2015), whereas a 1.5 T scanner was employed
for testing images. In addition, a reduced performance on test scans
may reflect the fact that they were obtained from a single time point,
whereas the scans of training set included multiple serial acquisitions
for each patients, which improved the accuracy of our automated
segmentation method.

4.5 Ablation studies

In order to explain the reason behind the design of the employed
architecture was chosen some ablation studies were done. The proposed
network architecture consists of a main backbone to which several
modules have been added, then some variants will be presented in
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Fig. 7. Some of results obtained in different trained networks of our approach tested with three patients of the dataset under construction. The image shows (a), (e), (i) the
original slice, (b), (f), (j) the ground-truth for that slice, (c), (g), (k) the prediction of our model, and (d), (h), (l) the false-positive (in red) and false-negative (in green) pixels of
P1, P2 and P3, respectively.
Table 4
Additional test performed on three different patients extracted from the new dataset,
named P1, P2 and P3, respectively, using the best validation model for each Folds.
The results are reported in terms of Dice Score (DSC). The last row shows the average
Dice Score across all folds (Average ± SD).

Fold ID DSC P1 DSC P2 DSC P3

1 0.8023 0.6944 0.5646
2 0.7290 0.6248 0.3443
3 0.8016 0.6097 0.4483
4 0.7954 0.6869 0.5537
5 0.7390 0.5765 0.4021
Mean 0.7730 ± 0.03 0.6384 ± 0.05 0.4626 ± 0.09

Table 5
Ablation studies performed on Folds 2 and 4 with different network configurations
employing the ISBI-2015 dataset.

Architecture DSC (Fold2) DSC (Fold4) DSC mean

FC-DenseNet [11] 0.8875 0.7989 0.8432
FC-DenseNet + C-LSTM 0.8639 0.7794 0.8216
FC-DenseNet + SA 0.8939 0.8048 0.8493
FC-DenseNet + SA + C-LSTM 0.8900 0.8101 0.8500
9

this Section. Specifically, some tests were carried out removing parts of
the network or replacing them with others in order to obtain a better
explanation of the model behavior and overall achieved performance.
The purpose is to quantitatively measure the contribution of each parts
to the overall model. Starting from a specific model, i.e. the Tiramisú
network architecture with squeeze and attention layers in the two paths
and the unidirectional convolutional LSTM layer in the bottleneck,
(shown as FC-DenseNet + SA + C-LSTM in Table 5), three different
configurations were considered: Basic Tiramisú model (FC-DenseNet
in Table 5), Tiramisú model with the addition of the unidirectional
convolutional LSTM level in the bottleneck (FC-DenseNet + C-LSTM
in Table 5) and the Tiramisú model with the addition of the squeeze
and attention modules in the two network paths (FC-DenseNet + SA
in Table 5). Every configuration was tested on two of the five folds
described in Section 4.2, chosen on the basis of the results obtained in
Section 4.3. In particular, the two folds with the best and worst Dice
Scores in test experiments were chosen, Fold2 and Fold4, respectively.
As can be verified from Table 5, the ablation studies demonstrate how
SA module always improves the performances while C-LSTM works
only if it is in couple with SA.

5 Conclusion and future work

In this paper we proposed a new framework to address the problem
of MS lesion segmentation on MRI in the effort to facilitate the estima-
tion of disease burden overtime. In particular, our approach is based
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on an extension of the U-net neural network. The proposed method
demonstrated to be more accurate than state-of-the-art methods, boost-
ing results by exploiting a dedicated attention mechanism. It is worth
noting that the simple insertion of attention does not always improves
results [34], whilst only a dedicated solution, as the novel one pre-
sented in this paper, could be able to provide substantial improvement.
The effectiveness and robustness of the technique was demonstrated
for the first time on patients never employed for the training of the
model. The high level of Dice Score, obtained by the proposed method
on this particular sample, is of utter importance in demonstrating the
generalizing capabilities of the solution, as it is not dependent to a
specific acquisition hardware and method. To further investigate these
capabilities, we are continuing the acquisition campaign with the aim
to have new samples and enrich the comparison dataset.

Furthermore, the lesion segmentation framework proposed in the
paper uses recent AI methodologies to estimate the level of progression
of the MS disease by recognizing automatically the lesions in MRI
images. The obtained data about the quantitative MRI lesion load will
be used in the UISS framework, which has the aim to model and
simulate the progression of MS lesions as well as to predict the immune
response to specific treatments. A potential future direction for the
research is to explore the possibility of replacing the recurrent layers
with 3D convolutions to enhance the performance of the network.
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