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The problems of dense stereo reconstruction, and object class segmentation, can both be 
formulated as a CRF based labelling problems in which every pixel in the image is assigned a 
label corresponding to either its disparity, or an object class such as road or building. While 
these two problems are mutually informative, no attempt has been made to jointly optimise 
their labelling. The work [1] provides a principled energy minimisation framework which 
unifies the two problems and demonstrates that, by resolving ambiguities in the data, joint 
optimisation of the two problems substantially improves performance on real world data sets. 
They evaluated the method, on the street view Leuven dataset [17].  
 
The image labelling problem can be defined as follows: Given the image, we need to 
determine for each pixel what labels/class does it belong to. The labels can be object classes 
(leading to object segmentation) or might be disparity/depth or any meaningful 
representation. Consider a set of random variables X = {X1, X2, . . . ,Xn} and a set of labels 
L = {l1, l2, . . . , lk}. The objective of a labelling problem defined over these random variables 
is to assign a label from the set L to each variable. Many computer vision tasks, such as image 
segmentation [16], stereo matching [22, 23,9], object recognition [18, 26,27], can be viewed 
as labelling problems. Typically, in such scenarios, the random variables correspond to pixels 
in an image, and the label set is defined according to the problem. 
 
Random fields provide an elegant probabilistic framework to model labelling problems [26, 
29, 34, 40]. They provide a neighbourhood relationship between variables, and incorporate 
not only (noisy) image measurements, but also a prior model over the labelling space in a 
principled manner. Let N represent the neighbourhood of the random field, which is defined 
by sets Ni, ∀i ∈ {1, 2, . . . , n}. The set Ni denotes the set of all neighbours of the random 
variable Xi. Markov random fields (MRF) model the joint probability of the labelling x and 
the data y, denoted by Pr(x, y). It follows the Markovian property that the image pixel will 
take labels based on properties from its neighbours.  
 
Conditional Random Fields (CRF) on the other hand uses the data observations to compute 
the pair-wise potentials. Two neighbouring pixels with different colour intensity are allowed 
to take different labels and thus the pair-wise potential was made to be dependent on the 
image data (observation). Kumar and Hebert [46] formalized the resulting probabilistic 
distribution as a conditional random field (crf) model in the context of computer vision 
problems. 
 
The labelling problem can then be formulated as a discrete energy minimization problem 
(Gibbs energy formulation) 
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The energy expression was augmented using higher order clique potentials, defined on the set 
of random variables derived from the pairwise interacting random variables [27, 45]. There 
the image is segmented [6] and some higher order cliques are defined over the super-pixels. 
The data term (also known as unary potential) derived from the image is obtained using 
features like textons [5] or disparity for stereo problems [3, 8, 42]. The pairwise energy terms 
are generally derived from image based on the gradient features. 



 
The Gibbs energy minimization is in general NP Hard and depends on the properties of the 
energy function. Two such families of energy functions for which powerful algorithms exists 
are: (i) Submodular energy functions [3, 40] and (ii) Energy functions defined on tree 
structured [37, 38] mrf/crf.  Submodular energy function minimization for certain random 
fields has been shown to be equivalent to a graph cut (specifically st-mincut) problem, which 
has several efficient polynomial time algorithms. Submodular energy function can be 
efficiently minimized using the Graph-cut based solution, while the multi-label problem can 
be converted to a binary problem and efficiently solved using st-mincut [13, 14] The graph-
cut based solution has also been used to find approximate solutions for non-submodular 
energy functions. 
 
 
 

 
 
Fig: Graph-cut 
Let us consider the binary image segmentation problem as an example. The nodes in the st-
graph correspond to pixels in the image, and the terminals represent the two labels, say 0 and 
1. The edge weights are set according to the energy function defined for the segmentation 
problem. The cost of the st-cut is equal to the energy of its associate labelling x, i.e. E(x). 
representaion of image as a graph has been suggested previously by Ishikawa[9] who did a 
stereo reconstruction over the pixel graph.  
 
Moves making algorithms: Boykov[12] suggested efficient graph cut based α-expansion and 
αβ-swap algorithms for solving non-submodular problems. These algorithms belong to the 
class of move making algorithm, where an initial label is assigned to the image pixel and a set 
of moves are performed. Other set of moves are known as range moves [47] where the 
pixel/node is given a label from a range (used in disparity/stereo matching) 
 
Another class of algorithms are the Message passing algorithms for MAP inference problem. 
For tree structures random field they are guaranteed to provide optimal solution (max-
product belief propagation algorithm exactly minimizes energy functions defined over 
graphs with no loops) [37, 44]. The message passing algorithms for discrete MRF-based 
optimization in computer vision has been enhanced via the technique of dual-decomposition 
in [38]. 
 
The stereo/depth reconstruction problems have been attempted from the last eighties, where a 
pair of images (or more for n-view stereo) was used to get the depth for each feature points. 
Geometric techniques were employed to get the sparse point set reconstruction using the 
estimation of Fundamental/Essential matrix. More recently dense stereo reconstruction has 
been studied extensively and MRF based approaches [40] have been defined for them.  



Similar to the the problem of object segmentation, dense stereo can be formulated as an image 
labelling problem where the image pixels take any of the predefined depth labels.  
 The dense stereo problems involve in estimating a 3D model of the scene by finding 
matching pixels in the images and converting their 2D positions into 3D depths [1].In the 
energy function we describe here, the set of vertices corresponds to pixels in the image, and 
the set of edges is given by 4-neighbourhood. The pairwise term is a Generalized Potts model, 
which encourages similar pixels to take the same label. This multi-label energy function can 
be minimized using the move making or message passing algorithms. 
 
 
Road scene classification has been an important area for autonomous systems and interesting 
vision problem. Object labelling for scene reconstruction has been used using popup-methods 
[49] and through CRF modelling[18] on camvid database [19]. The CamVid [19] data set 
provides sparse SfM cues, which were used by several object class segmentation approaches 
to provide pixelwise labelling. The scene reconstruction in an urban area [17] involves 
identifying the objects such as road, car and sky and finds their 3D locations. Compared to 
typical stereo data sets [48] that are usually produced in controlled environments, stereo 
reconstruction on this real world data is noticeably more challenging due to large 
homogeneous regions and photo-consistency problems. 
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