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Secrets of Optical Flow Estimation and Their Prin-
ciples [21]

We reckon that the main message in [21] is: there should be no secrets of optical
flow. In the paper, the best available optimization strategies in the field are
reviewed in order to find the top performing recipe for the minimization of the
typical optical flow objective functions. One of the effects of this study on the
future research might be normalizing the massive impact that the optimization
strategy has when systems based on only slightly different models are analyzed
and compared. In fact, the paper suggests that future research should aim
to design brand new models: even if better optimization tricks will become
available, they are expected to provide only incremental improvements.

The standard flow objective functional is composed of a data term and a
prior term. In the optic flow community it is often the case that the data
term component of the objective functional is not questioned. In this exercise
we initially traced back in the literature to find out what other models were
considered and why the one reported in [12] prevailed.

We started by looking for ”review” papers and by re-reading Marr [16],
searching for paths that lead to the ”classical” formulation for the data term
and paths that lead to dead ends.

Barron [3] identifies 4 main categories of optical flow models — Differen-
tial [6, 12, 15], Region Based [1], Energy Based [10] and Phase Based [27] —
according to the way they approach the correspondence problem. Marr [16] and
Ullman [24, 25] discuss the problem of correspondence in images as a 2D pro-
cess, based on the analogy with biological systems, finding evidence in [2, 23].
Different interpretations can be found, see branches ”intensity” [2, 23, 20] and
”tokens” [9, 18, 14], and we could trace these ideas back in [13] and even earlier
on in [8, 7].

It is our understanding that at this point in time the correspondence problem
is tightly linked to the idea of perception - what is visual data in the first place,
and how and when we perceive motion? We find seminal work by Gibson [7],
Higginson[11] and the original Gestaldtist work of Wertheimer in 1912 [28].
Gibson argued in [7] that although there are similarities in the schemata used
by different individuals, each man learns the “meaning of the world” for himself,
partly based on his cultural background and individual’s unique experience.

In Gibson we also find that it can be argued that the ”seeing of space, and
therefore the understanding of movement, depends, in some fundamental way,
on exploring and manipulating the environment”.

Two centuries earlier Bishop Berkeley, fellow at the Trinity College in Dublin,
argued in [4]: ”Seeing things could always be verified by touching things, and
hence it was possible that solidity and depth of visual world were originally not
visible but only tangible. Vision might get its spatial character from the tactile
and muscular impressions which always accompany it. We learn to trust our
vision of the table as being there, for instance, because we can always go over
and touch it.”
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In this interpretation, visual perception and understanding of motion are
here backed up by the information gathered via other senses and the interaction
with the environment: ”The extension, figure, and motions perceived by sight
are specifically distinct form the idea of touch called by the same names, nor is
there any such thing as one sense or kind of idea common to both senses”.

Berkeley says we learn ideas - mental models of the world - by blending infor-
mation form different senses, so that at times even if some sensory information
is not available we can still guess about the properties around us.

“I can also pick the ball up, and feel that it is spherical. I can feel
a smooth spherical surface. Not only can we see the shapes, sizes
and motions of visible things, and feel and shapes, sizes and motion
of tangible things, but the deliverance of experience seems to be that
there is in general, although not invariably, a spatial coincidence of
visible and tangible qualities.”

We believe that the success of richer models at solving low level vision tasks
proves this point. An example for flow could be [19], where the flow field is
implicitly found in the mapping from a latent image representation of the world
to the input frames of a video sequence, rather than being computed explicitly
as a frame to frame mapping.
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Towards high-resolution large-scale multi-view stereo

The root paper [11] proposes a two-stage pipeline that aims to combine the state-of-the-art in both multi-view
stereo and mesh processing to provide an accurate reconstruction method that also handles large scenes.

Multi-View Stereo

The authors improve upon their previous paper [14] by using dense stero estimation using the robust NCC
metric of [34]. The ‘plane-sweep’ stereo algorithm derives from the space-sweep method of [6]. The more
general origins of window based matching across multiple views can be traced back to [21] where the authors
were among the first to use multiple observations to reject outliers, having previously made use of locally
adaptive windows [20]. In particular they summed window SSD scores across images as part of their SSSSD
approach. Whilst others may have used multiple images they would use them to determine support rather
than as a method of directly estimating the surface with the possible exception to [31]. In this work the
author presents a ‘Window Variance Method’ for image matching and 3D object surface reconstruction using
multiple perspective views. The work of [2] recognised was among the first to solve the stereo problem over
scale using an explict MRF, solved using annealing. Earlier stereo methods operated on pairs and attempted
to increase the robustness using coarse to fine approaches to reject outliers, for example [17] where the
authors also formalise some of the constraints of the stereo problem. These constraints specifically include
an appearance consistency. The use of a window based consistency metric was used by Moravec, in particular
a modified NCC [19] for ease of computation, and earlier texture windows [18]. Prior to these works, the task
of analysing multiple view geometry for modern computation had been in the photogrammetry community,
for example [28] dedicates Chapter XI to Stereoscopy. The review on computational stereo [3] indicates that
the work of [25] was one of the first to combine the fields of visual perception, for example [10], with the
concept of computational stereo in the field that has become computer vision.

The visual hull concept was introduced by Laurentini [16] based on volume intersection methods first
proposed by Baumgart [5].

A surface quality heuristic inspired by the graphics literature is used to filter out improbable tetrahedra.
The β-skeleton method of [1] is generalised to 3D. The β-skeleton proposed by [12] is a special case of the
more general γ-neighbourhood graphs of [32].

Mesh processing

The second stage of the pipeline photo-refines the noisy mesh provided by the first stage, capturing the fine
detail. The authors cite [9] as a pioneering work in variational refinement for multi-view stereovision, but
the roots of this idea go much deeper. An original strategy for the solution of the variational problem, the
use of level set methods, has its roots in Sethian’s PhD thesis [26]. Sethian first applied level set methods to
the problem of crystal growth in the mathematics literature and later applied the technique to stereovision
in the computer vision field [27, 22]. The alternative approach [24], which is adapted in [9], expresses the
variational problem in the classical Tikhonov regularization framework [29, 30] using regularization functions
capable of perserving discontinuities. Robert et al. cite [4, 35] as earlier examples of the a minimization-
and-regularization approach to stereovision.

The discrete treatment on meshes for surface flow was first studied in [23], in which the problem of
plateau (i.e. computing minimal surface) was tackled. In this paper the represention of surfaces based on
triangle meshes and subsequently the discretization of gradient flows is achieved through the use of discrete
differential operators and/or using finite element techqniques [8]. Wilson(1961) [33] published his work that
demonstrated solving the problem of plateau using numerical methods, and subsequently his dissertation
titled ’A computational Attack on the Problem of Plateau’. This work was based on reformulation of the
original equation based on minimizing the area function to the Direchlet integral, which was first published
in Douglas (1931)[7].
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Tree for Multi-modal volume registration by max-

imization of mutual information

Wells et. al ’s paper [12] encompasses many ideas in computer vision. The two
that we have focused on are first the abstract idea of using information theory
as a framework for solving prolems in vision and secondly the application of
quaternions for solving the rigid body registration problem. There are many
other ideas that can be traced back and we briefly note a couple of these later.

Information theoretic approach to computer vision

The base paper [12] directly cited [6] and [4] which use entropy and information
in vision problems. From two papers, we did some back-tracing and found quite
a few relevant references (see the following list). These earlier papers tried to
understand the visual processing or more general perception from information
theory. The relationship among these papers are illustrated in the diagram
attached.

• Atick et al. 1990 [1] – The authors of this paper studied the early process-
ing in the mammalian visual pathway. Their model is generalised from
Barlow’s redundancy reduction hypothesis for perception and it hypoth-
esizes that the goal of visual processing is to recode the sensory data in
order to reduce a redundancy measure subject to a constraint that fixes
the amount of average information maintained.

• Linsker 1988 [15] – While the base paper aims to maximise mutual infor-
mation as a means of registration this paper aims to form M cells which
preserve maximum information (the ”infomax” criteria). Both papers use
Shannon’s definition of information and link it to the usefull information
an image provides about a scene.

• Sethi 1982 [23] – Another paper which approaches a problem in vision from
an information theoretic background. This paper addresses the problem
of classification. While it is a different problem that this paper aims to
solve it still uses the same idea as the base paper that mutual information
is an appropriate tool to use in this vision based problem.

• Laughlin 1981 [13]– Laughlin studied the contrast coding in the fly vi-
sual system from an information theoretic point of view. Considering a
single cell responding to a local contrast, Laughlin derived the optimal
transfer function and showed that this prediction compares very well with
its experimental measurement of the cell response curve. The theoretical
result is that, in order to maximize the amount of information conveyed
about the input signal, the cell should perform what is known in image
processing as ”sampling equalization”.

• Walker 1977 [29] – Walker investigated the role of information theory in the
perception problem. He proposed that mutual information between the
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perceived object and the perceptual indicator can be used as an important
criterion for claiming that some system perceives a certain object or not.

• Uttley 1966 [28] – Uttley examined the neural network for pattern recog-
nition in which the contribution of an input is made proportional to the
Shannon information between that input and the output. He named such
a network ”infomon” in his later papers or books [27]. He found that ”in-
fomon” framework overcomes limitations of the linear separation network.
Experimental results also matched properties of neurons in the cerebral
cortex and offered explanations of some known perceptual phenomena.

• Barlow 1961 [3] – Barlow proposed the efficient coding hypothesis for the
general perception and sensory problem and used Shannon’s information
theory for the analysis purpose. In his model, the sensory pathway is
treated as a communication channel. On the other hand, the neuronal
spiking is an efficient code for representing sensory signals, i.e., it maxi-
mizes available channel capacity by minimizing the redundancy between
representational units.

• Bell 1962 [5] – This paper is very closely related to the base paper in that
it also views mutual information as an alternative to correlation for mea-
suring the dependence of two signals. While it does not directly relate to
visual perception there is a strong parallel between the more traditional
measure of correlation, widely used in vision for matching, and the alter-
native method of mututal information which the base paper suggests as
an alternative.

• Attneave 1954 [2] – This is an even earlier attempt to use information
theory in visual perception. It notes that much of the visual information
contained in an image is redundant which has long been understood in
vision (reducing an image to an edge image and still being able to under-
stand the scene for example) and it is this redundancy in the information
provided by the two different sources of scans that allows the base paper
to align them. Similar ideas that reduction of redundancy is important in
the handling of sensory information were also set out in two other papers
[9],[17], and even earlier books [16], [19] from a psychological point of view:
concepts and hypotheses should be ”economical representations of the ac-
tual” and bring order and simplicity to our complex sensory experiences
in order to achieve ”economy of thought”.

• Shannon 1948 [24] – We would argue that this is going beyond the roots of
the idea from a perspective of vision. While it is indeed true that without
Shannon’s underlying work on information theory the base paper’s idea
would not be possible, at this point it is more the roots of the analytical
tool than the roots of the idea and if that path is followed then we could
trace all of the way back to the roots of basic algebra. It is important
to decide where to stop the tree and we believe that this is a logical
termination.
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Quaternions in registration

Estimating three-dimensional object position and orientation parameters from
image data is an important aspect of many computer vision problems and one
that the base paper [12] attacks using quaternions. The pioneering use of quater-
nions for representing the 3D rotations when registering 3D rigid objects is
usually accredited to [7], which perhaps is the mostly cited paper in the area.
[11] gave the solution to the problem of recovering the transformation between
two different Cartesian coordinate systems from the coordinates of a number
of points as measured in two systems. Such a solution is also provided in two
other slightly earlier papers [20, 10] in the realms of computer vision. [20] is
probably the first paper which clearly addressed the applications of quaternions
in computer vision. However, the groundwork for the application of quaternions
actually appear in even earlier literatures of robotics [21, 25] and photogram-
metry [22, 26]. The last two paper can be regarded as the earliest papers which
use quaternions to solve vision problems.

Other minor ideas

Virtually any idea or technique within the base paper can be traced back thorugh
many years or research. The two minor branches on the tree give two examples
of this. Without the idea that a probability density function can be estimated by
sampling the approach proposed would not be possible. The ideas behind this
can be traced directly back to Parzen 1962 [18] and even beyond to Lehmann
1950 [14] and from there it could even be argued back to the work of Gauss in the
late eighteen hundreds. Similarly the idea of looking at an image over multipler
scales, in the form of a Gaussian pyramid for example, is now a common one
and is used in the base paper. This technique can be traced back to Witkin
1983 [30] and the importance of scale in vision even further back, for example
to Campbell and Robson 1968 [8].
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