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Abstract—Parametric image segmentation consists of finding a label field that defines a partition of an image into a set of

nonoverlapping regions and the parameters of the models that describe the variation of some property within each region. A new

Bayesian formulation for the solution of this problem is presented, based on the key idea of using a doubly stochastic prior model for

the label field, which allows one to find exact optimal estimators for both this field and the model parameters by the minimization of a

differentiable function. An efficient minimization algorithm and comparisons with existing methods on synthetic images are presented,

as well as examples of realistic applications to the segmentation of Magnetic Resonance volumes and to motion segmentation.

Index Terms—Markov random fields, segmentation, motion.

�

1 INTRODUCTION

AFTER the seminal work by Besag [1] and Geman and
Geman [2], probabilistic methods and, in particular,

Markov Random Field (MRF) models, have been used with
great success for the solution of a number of important
problems in image analysis; there is a vast amount of
published works on the subject that include applications in
image restoration, segmentation, edge-preserving filtering,
reconstruction in inverse problems, etc. (see [3], [4], and
references contained therein). There are two main reasons
for this success: discrete MRFs provide a systematic
way—firmly rooted in Bayesian estimation theory—for
including prior constraints about the shape and average
size of homogeneous regions in an image; since these
macroscopic properties result from local interactions, a
wide variety of behaviors may be obtained, simply by
varying a few parameters in the definition of local
potentials in the MRF model. The second reason is that,
even when exact optimal estimators cannot be precisely
computed, it is possible to design reasonable approximate
algorithms that work well in many cases, although some-
times with high-computational costs.

A particular problem, that has been approached with
this kind of model, is image segmentation: It consists of
partitioning an image into a set of nonoverlapping
regions fR1; . . . ; RMg, so that the variation of some
property (such as intensity, depth, velocity, color, etc.)
within each region Rk is either constant, or follows a
simple model �k. What makes this problem specially
difficult is the fact that one has to estimate both the
parameters that characterize each model �k , and the
corresponding regions of validity Rk at the same time. To
solve it, prior MRF models have been used in conjunction
with iterative procedures—in particular, the Expectation

Maximization (EM) algorithm [5], which is reasonably
effective, but entail a high-computational cost. The goal of
this paper is to present a new class of probabilistic
models that permits the characterization of the solution
for complex segmentation problems in terms of the
minimization of a differentiable energy function, for
which efficient algorithms can be devised. We will show
that these models, which are also rigorously based on
Bayesian estimation theory, represent a significant im-
provement over classical MRF’s, both in terms of the
accuracy of the solutions and of computational complex-
ity, and are also versatile and generally applicable. The
plan of our presentation is the following: In Section 2, we
review the classical MRF formulation of parametric
segmentation problems, introduce our new model, and
present efficient estimation algorithms. In Section 3, we
compare experimentally the performance of the new
scheme with that of classical ones, and discuss the
problem of control parameter selection. In Section 4, we
present two examples of applications to illustrate the
versatility of our approach: to the segmentation of brain
Magnetic Resonance (MR) volumes and to motion
segmentation. Finally, some conclusions are drawn in
Section 5.

2 HIDDEN MARKOV FIELD MODELS FOR IMAGE

SEGMENTATION

2.1 Classical MRF Models

To describe the probabilistic models that have been used in
most cases to formulate segmentation problems, we
introduce the following notation: Let L represent the pixel
(or voxel, in 3D problems) lattice, where images I are
observed. The model assumes that there are M regions,
fR1; . . . ; RMg, such that L ¼

SM
k¼1 Rk;Ri \Rj ¼ ;; i 6¼ j, so

that the observation at pixel r 2 L is given by:

IðrÞ ¼
XM
k¼1

�ðr; �kÞbkðrÞ þ nðrÞ; ð1Þ

where nðrÞ is a white noise field with known distribution Pn

(e.g., fnðrÞ; r 2 Lg are 0-mean, independent, identically
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distributed Gaussian random variables with standard
deviation �), �ð�; �Þ is a parametric model, �k is the
parameter vector that corresponds to region Rk, and bkðrÞ
is the corresponding indicator function: bkðrÞ ¼ 1 , r 2 Rk;
note that bðrÞ satisfies the constraints:

XM
k¼1

bkðrÞ ¼ 1; bkðrÞ 2 f0; 1g; for all r 2 L: ð2Þ

Associated with b, there is a label field f , with
fðrÞ 2 ZM ¼ f1; . . . ;Mg, that indicates to which region r

belongs, i.e., bkðrÞ ¼ �ðfðrÞ � kÞ, where �ðxÞ equals 1 if
x ¼ 0, and equals 0 otherwise. In this model, the field f is
assumed to be a sample from a MRF, i.e., a sample from the
state space ZN

M (where N is the cardinality of L), obtained
with a Gibbsian distribution:

PfðfÞ ¼
1

Zf
exp½�

X
C

VCðfÞ�; ð3Þ

where Zf is a normalizing constant and the sum in the
exponent ranges over the cliques of a given neighborhood
system on L, and fVCðfÞg are “potential functions,” each
one of which depends only on the value of f at the sites that
belong to the clique C (see [2], [3] for details). These
potential functions, together with the neighborhood system
selected, control the appearance of the sample field f and,
hence, the properties of the estimated segmentation. A
potential that is often used is the generalized Ising model,
which considers cliques of size 2 (e.g., pairs of sites that are
one unit apart), and potentials of the form:

VCðfi; fjÞ ¼ ��; if fi ¼ fj

¼ �; otherwise;

where � is a parameter that controls the granularity of the
field. Since the field f is not directly observable, it is often
called a hidden MRF model. This is schematically repre-
sented in the upper panel of Fig. 1.

2.1.1 Estimation Algorithms

The segmentation problem consists of finding an optimal
estimator for both the field f and the parameter vector

� ¼ ð�1; . . . ; �MÞ, given the observations I. To obtain it, using
Bayesian estimation theory, one follows the steps [6]:

1. Find the likelihood of the observations P ðIjf; �Þ.
2. Using the prior distribution PfðfÞ (and P�ð�Þ, if

available), find the posterior distribution P ðf; �jIÞ,
using Bayes rule.

3. Define an appropriate cost function Cðf̂f; �̂�; f; �Þ, that
associates a cost to estimators f̂f; �̂�, given that the true
values are f; � (note that the function C may be
arbitrarily chosen).

4. Find the optimal estimators f�; �� byminimization of:

Qðf̂f; �̂�Þ ¼ E½Cðf̂f; �̂�; f; �ÞjI�: ð4Þ

We now analyze them in detail.
The likelihood of the observations is obtained from the

observation model (1) and the noise distribution Pn

(assumed known):

P ðIjf; �Þ ¼
Y
r2L

vfðrÞðrÞ; ð5Þ

where the kth component of eachM-vector vðrÞ is defined by:

vkðrÞ ¼ P IðrÞjfðrÞ ¼ k; �ð Þ ¼ Pn IðrÞ � �ðr; �kÞð Þ: ð6Þ

For example, for Gaussian noise, we have:

vkðrÞ ¼
ffiffiffi
�

�

r
exp½��jIðrÞ � �ðr; �kÞj2�; ð7Þ

where � is a parameter that depends on the noise variance.
Using (7), (3), and Bayes rule, one finds the posterior

distribution as:

P ðf; �jIÞ ¼ 1

Zp
exp½�Uðf; �Þ�;

where Zp is a normalizing constant, and

Uðf; �Þ ¼ �
X
r2L

log vfðrÞðrÞ þ
X
C

VCðfÞ � logP�ð�Þ; ð8Þ

where a noninformative (constant) prior P� may be used, if
there are no prior constraints on �.

The minimization of Q (4) is usually performed by two-
step procedures, which may be generically called Segmen-
tation/Model Estimation (SM) algorithms (the EM algo-
rithm is a particular example), in which the best
segmentation, given the current estimate for the model
parameters � is found in step S, and the best estimate for �,
given the current estimate for the segmentation, is found in
step M. The problem with this approach is that it is not
possible to find the exact optimal segmentation in the S step
and, hence, one must resort to approximations; the most
precise are based on stochastic, Markov Chain Monte Carlo
(MCMC) algorithms [2], [7], and are computationally very
expensive; fast approximations (e.g., the ICM algorithm [8])
are highly sensitive to noise. Approximations based on
Mean Field theory [9], [10] are faster than MCMC, but still
relatively expensive, and also sensitive to noise (see
Section 3). A recent algorithm for finding a segmentation
based on the Maximizer of the Posterior marginals (MPM)
estimator [11], based on a Gaussian approximation for the
posterior marginals, is fast and resistant to noise; however,
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Fig. 1. Probabilistic models for image segmentation. Above: Classical

MRF Model. Below: Hidden Measure Field Model (see text).



since the MPM estimator corresponds to a hard segmenta-
tion, the corresponding MPM-MAP procedure is very
sensitive to the initial estimate for �.

2.2 Hidden Markov Measure Field Models

The difficulties mentioned above may be solved if one uses
a different probabilistic model for the generation of the label
field f . Instead of the one-step procedure described in the
upper panel of Fig. 1, we propose to use the two-step
probabilistic model, with an additional hidden field p,
which appears in the lower panel: In a first step, a Markov
random vector field p is generated with distribution
P ðpÞ ¼ 1

K exp½�
P

C WCðpÞ�, where K is a normalizing
constant, C are the cliques of a given neighborhood system,
and WC are given potential functions, and where each
vector pðrÞ takes values on the M-vector simplex SM :

SM ¼ fu 2 <M :
XM
k¼1

uk ¼ 1; uk � 0; k ¼ 1; . . . ;Mg: ð9Þ

Hence, pðrÞ may be interpreted as a discrete probability
measure on ZM (the label state space). In a second step, the
label field f is generated in such a way that each fðrÞ is an
independent sample from the distribution pðrÞ, so that

P ðf jpÞ ¼
Y
r2L

pfðrÞðrÞ; ð10Þ

where pfðrÞðrÞ is the component of vector pðrÞ correspond-
ing to class fðrÞ. Note that the prior for f is:

PfðfÞ ¼
Z
SN
M

P ðf jpÞdPpðpÞ

which is not Gibbsian (see [12] for a proof), so that this class
of models is different from the classical ones. As in the
classical case, however, potential functions (for the p field in
this case) may be used to enforce the appropriate prior
constraints on the label field. The spatial coherence of
regions fR1; . . . ; RMg, for instance, may be enforced by
requiring that each vector pðrÞ is similar to its spatial
neighbors. A simple quadratic potential that expresses this
condition is:

WrsðpðrÞ; pðsÞÞ ¼ �jpðrÞ � pðsÞj2 ¼ �
XM
k¼1

ðpkðrÞ � pkðsÞÞ2;

ð11Þ

where � is a positive parameter, and < r; s > are
neighboring sites in L. Other potentials may be defined to
enforce more complex constraints, but here we concentrate
on this simple one.

The posterior distribution P ðp; �jIÞ is obtained from
Bayes rule as:

P ðp; �jIÞ ¼ 1

Z
P ðIjp; �ÞPpðpÞP�ð�Þ; ð12Þ

where Z is a normalizing constant. The conditional
distribution P ðIjp; �Þ is obtained as:

P ðIjp; �Þ ¼
Y
r2L

P ðIðrÞjp; �Þ:

The conditional distribution P ðIðrÞjp; �Þ may be obtained
by first computing the joint conditional distribution

P ðIðrÞ; fðrÞjp; �Þ ¼ P ðIðrÞjfðrÞ; p; �ÞP ðfðrÞjp; �Þ;

and then marginalizing over fðrÞ:

P ðIðrÞjp; �Þ ¼
XM
k¼1

P ðIðrÞjfðrÞ ¼ k; p; �ÞP ðfðrÞ ¼ kjp; �Þ:

Using the fact that P ðIðrÞjfðrÞ; p; �Þ ¼ P ðIðrÞjfðrÞ; �Þ and
that P ðfðrÞ ¼ kjp; �Þ ¼ pkðrÞ, one obtains:

P ðIðrÞjp; �Þ ¼
XM
k¼1

vkðrÞpkðrÞ ¼ vðrÞ � pðrÞ; ð13Þ

where vkðrÞ is given by (7).
From (13) and (12), one finally gets:

P ðp; �jIÞ ¼ 1

Z
exp½�Uðp; �Þ� ð14Þ

with

Uðp; �Þ ¼ �
X
r2L

logðvðrÞ � pðrÞÞ þ
X
C

WCðpÞ � logP�ð�Þ;

ð15Þ

where we consider cliques of size 2 and potentials given by
(11). To obtain the optimal estimator f� for the label field,
we use the following procedure:

1. Find the MAP estimators p�; �� for p; �:

p�; �� ¼ arg max
p2SN

M
;�
P ðp; �jIÞ: ð16Þ

2. Find f� as the maximizer of P ðfjp ¼ p�; � ¼ ��; IÞ.
The first step is equivalent to the minimization of Uðp; �Þ,
given by (15), subject to the constraints:

pðrÞ 2 SM; for all r 2 L ð17Þ

with SM defined by (9), while the second step consists
simply of finding the mode for each discrete measure p�ðrÞ
in a decoupled way:

f�ðrÞ ¼ argmax
k

p�kðrÞ: ð18Þ

The computational burden, thus, lies on the first step; since
(15) is differentiable, however, this minimization may be
carried out very efficiently, as we now show.

2.3 Energy Minimization Algorithm

The minimization of (15) may be effected using any general
purpose constrained optimization technique; we have
found, however, that due to the simplicity of the constraints
(17), and the structure provided by the Markovianity of the
p field, a multiscale gradient projection Newtonian descent
(GPND) [13], [14] gives best results. This method is based
on the idea of moving, at each iteration, in a direction d such
thatrU � d < 0 (so that it is a descent direction), and that the
new point lies in the feasible region. This is achieved by
choosing d as the projection of the negative gradient onto
the tangent subspace defined by the set of active constraints
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(see [14, pp. 331-339]). The convergence may be accelerated
if one considers each element pkðrÞ (or �jðrÞ) as the position
of a particle of unit mass, subject to a force equal to
�@U=@pkðrÞ (respectively, �@U=@�j). The equations of
motion for these particles may be obtained from Newton’s
second law:

€�� ¼ �r�U � 2� _��

€pp ¼ �rpU � 2� _pp;

where � is the friction coefficient. The discretization of these
equations gives an iterative gradient descent algorithm with
inertia; to satisfy the constraints (17), each new particle
position pkðrÞ must be projected back into SM , to get the
complete iteration as:

�ðtþhÞ ¼ 2

�hþ 1
�ðtÞ þ �h� 1

�hþ 1
�ðt�hÞ � h2

�hþ 1
rpUðpðtÞ; �ðtÞÞ

~pp ¼ 2

�hþ 1
pðtÞ þ �h� 1

�hþ 1
pðt�hÞ � h2

�hþ 1
rpUðpðtÞ; �ðtÞÞ

pðtþhÞðrÞ ¼ �SM
ð~ppðrÞÞ; for all r 2 L;

ð19Þ

where the operator �SM
ð~ppðrÞÞ finds the closest point x 2 SM

to the vector ~ppðrÞ 2 <M . This is done by the following
algorithm (see [12] for details):

1. set x ¼ ~ppðrÞ and A ¼ ZM ;
2. while x =2 SM do:

a. for k ¼ 1; . . .M, set

xk ¼ ~ppkðrÞ �
P

i2A ~ppiðrÞ � 1

jAj ; if k 2 A

¼ 0; if k =2 A:

b. set A ¼ fk : xk � 0g;
Note that this algorithm will converge at most in M

iterations.
The minimization of (15) may be further accelerated

using a multiscale approach, which is the one we use in the
experiments reported below (see [12] for details).

3 EXPERIMENTAL PERFORMANCE

In this section, we use synthetic images to compare the
experimental performance of the new approach presented
here (labeled HMMF) with that of classical MRF models; we
compare with MPM estimators, first, because they are
known to perform better than MAP estimators, particularly
for high noise levels [6], and, second, because they are
based on the estimation of the posterior marginals, which
are the basis for EM procedures, whose performance is also
interesting to compare. For the classical case, we use the
generalized Ising model and three methods for computing
the posterior marginals for the f field: a stochastic MCMC
algorithm (the Gibbs Sampler [2]); the Mean Field (MF)
approximation [9], and the Gaussian approximation re-
ported in [11] (labeled GMMF).

In the first set of experiments, the task is to perform
intensity-based segmentation from noisy data when the
regions corresponding to each class have known constant

intensity (i.e., �ðr; �kÞ ¼ �k, assumed known), and the
purpose is to compare the robustness of each method
with respect to noise. We assumed five classes, with the
class distribution shown in Fig. 2a, and with �k ¼ k,
k ¼ 1; . . . ; 5. The observed images are obtained by adding
white Gaussian noise with increasing variance. As a
performance measure, we choose the average number of
segmentation errors. The results are summarized in Fig. 2c.
As one can see, for low noise levels, all methods give
similar results; as the noise level increases, the perfor-
mance of the MF and MCMC approximations break down
(for � ¼ 1:5 and � ¼ 2, respectively), while GMMF and
HMMF degrade more gracefully, with HMMF giving the
best results. In all cases, the control parameters for each
method were hand adjusted to get the best possible
performance. We have also compared the performances
of HMMF and GMMF using the same eight-class multi-
band segmentation problem presented in [11]; the results
are consistent with those of Fig. 2 (see [12] for details).

In a second set of experiments, we test the relative
robustness of the EM algorithm and our proposed
procedure, with respect to initialization. To do this, we
take again a synthetic, piecewise constant image with three
classes, but this time we assume that the intensities
ð�1; �2; �3Þ are not known. We then generate 20 random
starting points, with uniform distribution on the dynamic
range of the observed image, and note whether the
corresponding algorithm converged to a neighborhood (a
ball of radius 0.1) of the true values of �, in which case, the
run was labeled as a “success.” We tested the EM algorithm,
using MF and MCMC to compute the posterior marginals
and the direct HMMF method presented here. The results
are summarized in Fig. 3, which also includes the
corresponding average processing times. As one can see,
the EM algorithm, even with an accurate approximation for
the marginals (obtained with MCMC) is quite sensitive to
initialization, giving a maximum success rate of 60 percent.
This rate falls down to 0 for high noise levels if the MF
approximation is used. HMMF, on the other hand, is much
more robust (giving an 100 percent success rate in both
cases) and, since it does not need to iterate, alternating
between E and M steps, achieves this at a fraction of the
computational time (all times refer to a PC-based work-
station running at 1.8GHz).
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Fig. 2. For the experiments described in the text: (a) Class distribution.

(b) 128� 128 observed image for noise std. dev. = 15. (c) Comparative

performance for four Bayesian estimators, for different noise levels.



HMMF has an additional advantage: If the exact number
of models is not known in advance, one may initialize the
procedure with a relatively large number of models, and the
superfluous models will be automatically eliminated, in the
sense that, if the parameter vectors for two models j; k
become almost equal, the p distributions will exhibit only
one dominant mode in the corresponding support region,
corresponding to either one of these models.

A final word must be said about the setting of the control
parameters for these methods. In all cases (i.e., for EM/
MCMC, EM/MF, and HMMF), there are two control
parameters: one that corresponds to the noise variance
and the regularization parameter that controls the granu-
larity of the reconstructed regions. Ideally, these parameters
should be estimated—or at least fine-tuned—from the data
and, in principle, some of the procedures that have been
proposed to do this in the classical case [15], [9], [16] may be
extended to the case of HMMF as well. The problem is that
these procedures have, in general, a very high-computa-
tional cost, which we are trying to avoid in this case. The
development of efficient hyperparameter estimation meth-
ods for HMMF is thus an important open problem, which
we are currently investigating; however, HMMF is not too
sensitive to the precise setting of these parameters: We have
found, experimentally, that there is a large region around
the optimal setting where the error surface (i.e., average
number of segmentation errors) is very flat, and the overlap
between these flat regions for different values of the SNR is
also quite large (see [12] for details). This means that it is
possible to callibrate the method for a particular problem
class, selecting “good” values for the control parameters for
a test image that belongs to the class, and use these values
for the whole class of problems, getting acceptable results.
This is the approach we follow for the applications
described in the next section.

4 APPLICATIONS

4.1 Segmentation of Brain Magnetic Resonance
Images

Magnetic resonance (MR) images of the brain provide a
means for imaging tissue at very high resolutions, and the
assignment of each voxel to a specific class (i.e., White
Matter (WM), Gray Matter (GM), or Cerebro Spinal Fluid
(CSF)) is important for visualization (as in surgical plan-
ning), for solving inverse problems (e.g., in electric
tomography), and for relative volume quantification, which

is important for the diagnosis and prognosis of certain
illnesses, etc. The main difficulties found in the automatic
segmentation of brain MR volumes are due to two reasons:
one is the presence of noise in the data, which cause voxel-
by-voxel classification methods to produce granular or
fragmented regions that violate anatomical constraints, and
the other is that image intensities are, in general, non-
constant for each tissue class, due to irregularities in the
magnetic fields, varying magnetic properties of biological
tissues, operating conditions of the MR equipment, etc. For
these reasons, a precise segmentation method should
include an appropriate model for spatial interactions—to
control the spurious granularity due to noise —and also the
simultaneous estimation of smoothly varying intensity
models for each class. This makes this problem an ideal
candidate for the probabilistic segmentation methods that
we have described in the previous sections.

Bayesian estimation, with prior MRF models for the label
field, combined with SM methods (such as EM) for the
estimation of smooth intensity models, have in fact been
used by a number of researchers [17], [18], [19], [20], with
the problems and limitations discussed in Section 2. In most
of these works, the smooth intensity models � are assumed
to be of the form:

�ðr; �; kÞ ¼ 	k�ðr; �Þ;

where ð	1; . . . ; 	MÞ are the mean intensities for each tissue
class and �ðr; �Þ is a multiplicative bias field that is
supposed to affect all tissue classes in the same way (see
also [21] for a related approach). If one wants a model that
depends linearly on the parameters, however, it is
necessary to perform a logarithmic transformation on the
image intensities, which alters the noise distribution in a
complex way, so that the Gaussian assumption is no longer
valid, and also alters the image histogram, making the
separation more difficult. For these reasons, and also
because this simple model does not take into account the
spatial variation of magnetic properties of specific tissues,
we prefer to use more flexible, global spline-based models
defined as linear combinations of basis functions fNj; j ¼
1; . . . ; Jg each one of which has local support (see [22]):

�ðr; �; kÞ ¼
XJ
j¼1

�kjNjðrÞ ð20Þ

each one of the functions fNjg corresponds to a quadratic
tensor product B-spline basis function B2 [23], translated to
a node of a regular subgrid of the voxel lattice, which we
call the spline subgrid: NjðrÞ ¼ B2ððr� njÞ � dÞ, where nj

denotes the coordinate vector (in voxels) of the jth node of
the spline subgrid and d ¼ ð1=�x; 1=�y; 1=�zÞT is a scaling
vector, with �x;�y;�z denoting the distance between
neighboring nodes on the spline subgrid for each direction.
Since interslice intensity variations in MRI are usually
larger than intraslice ones, we use a value of 32 voxels for
�x and �y, and of one voxel for �z.

To further control the rigidity of the models, we impose a
“membrane” Gibbsian prior on �, of the form:

P�ð�Þ ¼
1

Z�
exp �

XM
k¼1

X
<u;v>


uvð�ku � �kvÞ2
" #

; ð21Þ
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Fig. 3. Top: Observed image with noise std. dev. of 1.5 (left) and sample

successful (center) and unsuccessful (right) segmentations. Bottom:

Success rates and average processing times for different estimation

procedures for the experiment explained in the text.



where the second sum is taken over nearest neighbor pairs
of nodes < u; v > in the spline subgrid. For 
uv, we used 0.1
in the x� y direction and 0:01 in the z direction.

To validate this application of the HMMF procedure, we
use the Brainweb MRI simulator [24], which allows one to
generate high quality simulated MRI volumes from known
(ground truth) anatomical models, for different levels of

noise and spatial inhomogeneities. Fig. 4 shows a sample
slice of the simulated MRI, the anatomical model, the
HMMF segmentation, and the reconstructed intensity
�ðr; ��f�ðrÞÞ. Fig. 5 shows a comparison between HMMF

results and other published results on the same data,
namely, the procedure presented in [25], which uses an
EM/MF approach. The performance index � used for the
comparison is:

�k ¼
2VGPk

VPk þ VGk
;

where VGPk denotes the total number of voxels that were
correctly assigned to class k by a given procedure, VPk is the
total (correct + incorrect) number of voxels assigned to class

k by this procedure, and VGk denotes the total number of
voxels belonging to class k in the anatomical model (ground
truth). Note that �k is always between 0 and 1, with 1
corresponding to a perfect segmentation. As one can see,

the performance of HMMF is practically insensitive to the
presence of spatial inhomogeneities, indicating they are
adequately modeled. The values for the control parameters
were: � ¼ 0:01 in the x� y direction; � ¼ 0:001 in the z

direction, and � ¼ 1. It is important to note that the same
values were used for the complete set of experiments (i.e.,
for different values of the noise intensity and of the spatial
inhomogeneities). The initial values for p and � were:

pkðrÞ ¼ 1=M, for all k; r, and � selected in such a way that
each model �ðr; �kÞ corresponded to a constant intensity,
with these intensities corresponding to the minimum,
middle, and maximum intensities of the MR volume. The

brain parenchyma was segmented using the procedure
described in [22] prior to the segmentation step.

4.2 Motion Segmentation

We now present an application example where the
parameter vector � enters into the energy function in a
highly nonlinear way, and show that the HMMF method
still gives very good results. This example is the segmenta-
tion of objects moving according to different velocity
models from an image sequence. This is an important
problem in computational vision: Useful descriptions of
complex scenes are usually composed of several moving
objects and simple parametric descriptions of their motions.
What makes this problem difficult is that one has to find
both the model parameters and the corresponding objects
(i.e., the region where the model is applicable) at the same
time. Although other approaches are possible (e.g., [26]), the
most successful follow the Bayesian paradigm discussed in
Section 2.1 [27], [28], [29], [30], [16]. In this case, the models
� are vector-valued (since they represent velocities in 2D),
and the observation model is:

I1ðrÞ ¼ I2ðrþ �ðr; �fðrÞÞÞ þ nðrÞ; ð22Þ

where I1; I2 represent two successive frames from the
sequence, and fðrÞ indicates the active model in pixel r, as
before. Note that, since � enters as an argument of the
intensity I2, one would need to solve a highly nonlinear
optimization problem in the M step in the EM procedure, if
this approach is used. To avoid this problem and lower the
computational cost, often a globally smooth optic flow is
precomputed and then segmented [30], in which case, the
energy function in the M step becomes quadratic. However,
this has a disadvantage; since a regularization method must
be used to compute the optic flow, the final segmentation
results are likely to lose small details and localization of the
boundaries between regions. With the HMMF approach,
one may work directly with the image intensities since the
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Fig. 4. (a) Sample slice of a simulated brain MR volume with 9 percent

noise and 40 percent inhomogeneity. (b) Anatomical model (ground

truth). (c) HMMF segmentation. (d) Reconstructured intensity �ðr; ��f�ðrÞ Þ.

Fig. 5. Performance index for different noise levels for the HMMF

segmentation and the one reported in [25] (lebeled KVL) for a simulated

MR volume, for (a) 0 percent and (b) 40 percent spatial inhomogeneities.



added nonlinearity represents only a marginal increase in
the computational complexity of the procedure. For the
motion models �, we use the spline models (20) with a
Gibbsian prior (“membrane splines”), as described above,
for each component of the velocity, since these models
extrapolate as constants outside their support region and,
hence, are less prone to produce spurious interactions with
other regions and are numerically more stable than affine
models. Besides, they provide a way (via the 
 parameter in
(21)) to control the rigidity of the model and, hence, the
character of the reconstructed optic flow, which may go
from piecewise constant (for high values of 
) to piecewise
smooth (for low values).

The initial values for � for the minimization of (15), are
not very critical in the piecewise constant (pure translation)
case (see Section 3). We have found that it is not necessary
in this case to precompute the optic flow; we took 15� 15
pixel windows, randomly placed in image I1, and found, for
each window Wk, the parameter vector �k as:

�k ¼ argmin
�

X
r2Wk

½I1ðrÞ � I2ðrþ �ðr; �ÞÞ�2;

which may be very efficiently done using the Gauss-
Newton algorithm [31]. Once the minimum of (15) is found
for the piecewise constant case, the piecewise smooth
segmentation is initialized with constant membrane spline
models which are set equal to the optimal translations. The
performance of this scheme, using two frames of a real
motion sequence, is illustrated in Fig. 6. For the piecewise
constant case, we used eight models, which were auto-
matically reduced to five for the piecewise smooth case.
Since the vertical component of the motion was very small
in this case, we show only the horizontal component of the
reconstructed flow in panels Figs. 6e and 6f. The values for
the control parameters were � ¼ 0:0001 and � ¼ 1 in both
cases, and the distance between nodes of the membrane
spline grid was 32 pixels.

Other examples of applications, e.g., to edge-preserving
denoising, may be found in [12].

5 DISCUSSION

We have presented a new energy-minimization method for
image segmentation, in the case when the parameters of the
models that describe the spatial variation of a given
attribute within each segment are not known and when it
is necessary to include prior constraints for the spatial
coherence of the supports for each model. This method is
rigorously based on Bayesian estimation theory, and its key
idea is to introduce a hidden Markov random measure
field, so that the (also hidden) label field is generated by a
two-step stochastic procedure. The resulting posterior
energy, given by (15), may be directly minimized with
respect to p and �, subject to the constraints pðrÞ 2 SM ,
instead of using costly two-step iterative procedures, such
as EM, and without having to use approximations, such as
MF. For the minimization of this function, any nonlinear
constrained optimization method may be used. We have
tried, for instance, a Quasi-Newton scheme, using a barrier
function to handle the constraints [31]; the results we have
gotten so far, however, are practically indistinguishable
from the ones obtained with the simple gradient projection
scheme reported here, and the computational cost is
significantly higher.

We have presented examples that illustrate the perfor-

mance of this method in a variety of situations: in intensity-

based segmentation, using simple constant models, and also

parametric models of high order (membrane splines), and

in motion segmentation, where the model parameters enter

in a highly nonlinear fashion. For simplicity, we have used

Gaussian noise models in all cases, but any other model

(e.g. Rayleigh noise in MRI segmentation) may be easily

incorporated, simply modifying the definition of the like-

lihood vector (7). In all cases, one gets a consistently robust

behavior, both with respect to noise, and with respect to

initialization, with a reasonable computational cost. The

enhanced performance of this method may be due, in part,

to the nonlinear data term �
P

r logðvðrÞ � pðrÞÞ, which is

used instead of the classical �
P

r log vðrÞ (which is

quadratic only for Gaussian noise): This term, in combina-

tion with the quadratic regularization term
P

<r;s> jpðrÞ �
pðsÞj2 permits the energy function (15) to strike a good

balance between two opposing tendencies. On one hand,

the data term pushes each distribution pðrÞ toward low

entropy configurations, in which one component pkðrÞ
dominates, because the minimum of � logðvðrÞ � pðrÞÞ,
subject to pðrÞ 2 SM , is attained by pjðrÞ ¼ �ðj� kÞ, j ¼
1; . . . ;M where k ¼ argmaxj vjðrÞ. On the other hand, the

regularization term acts as a diffusion and, hence, tends to

produce high entropy (uniform) configurations; this balance

permits the solution to evolve from an initial uniform state

to a final low entropy configuration at an appropriate rate,

so that the model parameters � can escape from local

minima at the beginning when the segmentation induced

by p is “soft” and be optimally adjusted at the end when

each pðrÞ is sharply peaked.
As in the classical case, the potentials WC may be

adjusted to include constraints that are relevant to
particular applications. We have found that the simple
quadratic potentials given by (11) are sufficient to enforce
general spatial coherence prior assumptions, but variations
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Fig. 6. (a) and (b) Two frames of a real motion sequence. (c) and

(d) Piecewise constant and piecewise smooth segmentations. (e) and

(f) Magnitude of the horizontal component of the velocity for the

piecewise constant and piecewise smooth cases.



of these potentials and the inclusion of additional terms
should improve the results in specific cases.
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