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High-precision stereo disparity estimation using HMMF models
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Abstract

In this paper, stereo disparity reconstruction is formulated as a parametric segmentation problem in a Bayesian framework: the goal is
to partition the reference image into a set of non-overlapping regions, inside each one of which a specific disparity model (which consists
of two coupled membranes) is adjusted. The problem of simultaneously finding the regions and the parameters of the corresponding
models is formulated using a novel probabilistic framework which uses a hidden Markov random measure field model, which allows
one to efficiently find the optimal estimators by minimization of a differentiable cost function. This framework also allows for the explicit
modeling of occlusions, consistency constraints and correspondence of disparity and intensity discontinuities. It is shown experimentally
that this method produces competitive results, with respect to state-of-the-art methods, for discretized (integer) disparities and
significantly better results for high-precision real-valued disparities.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Stereo correspondence is one of the most investigated
topics in computer vision and many methods have been
proposed to solve this problem. This paper emphasizes
two-frame stereo matching, composed by fixed monochro-
matic cameras and parallel optical axis, so that the epipolar
lines are horizontal; if the image planes are not coplanar, the
epipolar lines will not be horizontal; however, it is possible to
wrap the images in a preprocessing step, so that the epipolar
lines become horizontal. Therefore, this model may be
considered a general one.

In spite of two decades of research in this area, in which
many algorithms have been proposed, the attainable results
tend to show some defects, becoming important as more
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applications use stereo-vision as a relevant part of their
tasks. Among these applications we can mention highly real-
istic 3D models to visualize and simulate events like flight
simulators, film industry or product presentations; the range
of applications may be extended to robot vision, passive
range finding, topography mapping from aerial photo-
graphs, architecture visualizations, virtual reality or surface
reconstruction in surgical fields, etc. All these examples
require piecewise smooth disparity maps with very high pre-
cision and good edge definition, as well as automatic occlud-
ed region detection.

To estimate a disparity map, the correspondence prob-
lem must be solved. In order to make this task possible,
two basic assumptions are made:

• Most of the points in the scene are captured in both
images.

• Corresponding regions in the images are similar.

Although these assumptions are true and the search
space is reduced by searching only in horizontal epipolar
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lines [1], this is an ill-posed problem due to the inherent dif-
ficulties of the process; among the principal ones we can
mention: occlusions, where objects that are closer to the
cameras occlude some parts of farther objects, thus some
points in the scene are visible only to one camera; noise

caused by some artifacts generating differences between
the images; homogeneous regions, where there are no signif-
icant intensity variations, so that every point may be
matched with every other point inside these regions; or pho-

tometric variations due principally to foreshortening, depth
discontinuities, lens blur, and image sampling. All these
problems imply that stereo algorithms should provide dis-
parity values for regions which are not found by a match-
ing process and, ideality, they should also locate occluded
regions.

Different approaches have been proposed to solve the
correspondence problem; an exhaustive survey of the lit-
erature is beyond the scope of this paper, but some
books [4–7] and review papers [34] cover the basics of
this subject.

There are two principal approaches to solve the corre-
spondence problem; the first one is based on local optimi-
zation methods. These methods search the smallest value of
some correspondence metric for a pixel in the reference
image with respect to another pixel in the matching image.
Among these, there are window-based methods that esti-
mate correspondences inside a region (window), using as
a measure cross-correlation [10,11], squared intensity dif-
ference (SD) [8], or absolute intensity difference (AD) [9].
There are also methods that use more than one fixed win-
dow in each position [12], or variable windows [13,14], get-
ting better disparity estimates inside homogeneous
intensity regions.

The second approach is based on global optimization
methods. In this case, the goal is to minimize a function
which depends on a disparity field between a reference
image IR and a matching image IT. In addition to a corre-
spondence term, a spatial coherence disparity term is used
to regularize that solution, getting energy functions of the
form:

EðdÞ ¼
X

r

q1ðIRðrÞ; IT ðdðrÞÞÞ þ
X
hr;si

q2ðdðrÞ � dðsÞÞ ð1Þ

where dðrÞ 2 R is the value of the disparity field at each site
r; q1 is a function that measures the intensity difference be-
tween the images IR, IT for a given d, and q2 is some mono-
tonically increasing function that measures the disparity
difference between nearest neighbor pairs. To minimize this
function many methods have been proposed; regulariza-
tion-based methods [15] use a quadratic function q2 that
makes d smooth, but may yield poor results at disparity
discontinuities; to avoid this problem robust functions q
have been used as in [16,17]. After the seminal paper of
Geman and Geman [18] in which a Bayesian interpretation
of this kind of energy functions based on Markov random
fields (MRF) was made, many algorithms have been pro-
posed using different techniques for the computation of
the optimal estimator, such as: simulated annealing
[19,20], highest confidence first [21], belief propagation
[22], mean-field [23], and recently methods based on max-
flow and graph-cuts [24,25,42]; models based on MRF
and psychovisual cue [2]. Finally, dynamic programming
has been used to minimize similar cost functions that allow
the enforcement of constraints involving occlusions
[26,28,29], continuity and monotonicity [12].

In this paper, we present a new disparity estimation
method, based on a recently proposed Bayesian formula-
tion of a parametric image segmentation problem which
uses a hidden Markov measure field (HMMF) model
[31]. We will show that this method yields a dense high-pre-
cision disparity map at subpixel level inside regions with
small disparity variation, localizing at the same time dis-
parity discontinuities and occluded regions.

Our approach is related to the one presented in [42],
in the sense that disparity estimation is formulated as a
parametric image segmentation problem; however, in
[42] a minimization framework based on a two-step
(MAP-MAP) algorithm is used, which makes the process
slow and sensitive to noise and initialization. In our case,
we propose a different model (a ‘‘dual membrane’’),
which permits the recovery of the global shape of the
disparity field, as well as small high-frequency variations,
getting high-precision disparity maps. Another important
difference is that in our approach it is not necessary to
use two-step procedures, such as Expectation-Maximiza-
tion or the MAP-MAP algorithm, to compute the seg-
mentation and the parameters of the models; instead,
one directly minimizes a differentiable function obtained
from the HMMF model, making our method more
robust with respect to the selection of the starting points,
less vulnerable to noise and computationally more effi-
cient. In the proposed energy function we incorporate
constraints about the localization of disparity discontinu-
ities, using intensity edges [40,34], and occluded regions,
characterized by the inconsistency between disparity
maps using successively, as reference image, the right
and left components of a stereo pair.

The plan of our presentation is as follows: in Section 2,
we present the Bayesian formulation of disparity estima-
tion as a parametric segmentation problem using HMMF
prior models. In Section 3, we describe the double-mem-
brane parametric model. In Section 4, we propose some
modifications to the model to incorporate edge informa-
tion to improve the localization of disparity discontinuities.
In Section 5, we show some results and comparisons with
other recent algorithms. Finally, in Section 6 we discuss
the results obtained in this work and present some
conclusions.

2. Hidden Markov measure field models for stereo

In this work, we propose to use a parametric segmenta-
tion approach to estimate disparity; the reference image IR

is divided into M regions {Rk, k = 1, . . . ,M}. Inside each
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region, the disparity d (r), at each position r, is given by the
parametric model U (r,hk), so that

IRðrÞ ¼ IT ðr � Uðr; hkÞÞ for r 2 Rk ð2Þ
where IT is the matching image of a stereo pair and hk is the
parameter vector that corresponds to region Rk (in what
follows, h will denote the set of all parameter vectors hk,
k = 1, . . . ,M).

The problem with this approach is that we have to esti-
mate, at the same time, the regions and the parameter val-
ues of the corresponding disparity models. To solve this
complex problem, we use a new probabilistic formulation
based on HMMF models [31], firmly rooted in Bayesian
estimation theory, which allows one to introduce con-
straints about the form and size of each region Rk. To
describe this model for estimating disparity, we include
the following definitions: let L be the pixel lattice with N

sites, where the stereo pair IR, IT is observed, with
L ¼ [M

k¼1Rk; Ri \ Rj = ;, i „ j. Associated with IR there is
a label field f, indicating to which region Rk does every pix-
el in L belong to: f (r) = k iff r 2 Rk. The intensity of each
pixel r 2 L of IR is given by

IRðrÞ ¼ IT ðr � Uðr; hf ðrÞÞÞ þ nðrÞ ð3Þ

where n (r) is a white noise process with known distribution
Pn (e.g., n (r) are independent, zero mean, identically dis-
tributed random variables) and the sign depends on the ref-
erence image; if it is the left image, the minus sign is used,
otherwise the plus sign is applied.

In this model, Fig. 1, the label field f is generated by a
two-step stochastic process; in the first step, a Markov ran-
dom vector field p is generated, where each p (r) satisfies the
following constraints:

XM

k¼1

pkðrÞ ¼ 1; pkðrÞP 0; k ¼ 1; . . . ;M ð4Þ

so that each p (r) can be interpreted as a discrete probability
distribution on {1,2, . . . ,M}. In the second step, the label
field f is generated in such a way that each f (r) is an inde-

pendent sample of the corresponding distribution p (r).
The important point about this model is that it allows
Fig. 1. HMMF model fo
for a formulation of the problem in which instead of trying
to estimate the discrete field f directly – which would entail
solving a difficult combinatorial optimization problem –
one first estimates the p field (which is real-valued, and
hence may be done using gradient-based techniques) and
then estimates the f field on a pixel-by-pixel basis. We
now explain how this is done.

Using the model of Fig. 1, one can compute the poster-
ior probability of p, h using Bayes rule:

P ðp; hjIR; IT Þ ¼
1

Z
PðIR; IT j p; hÞP pðpÞP hðhÞ ð5Þ

where Z is a normalization constant. The conditional dis-
tribution P (IR, IT|p,h) is obtained as:

P ðIR; IT jp; hÞ ¼
Y
r2L

P ðIRðrÞ; IT ðrÞjp; hÞ ð6Þ

The individual conditional distributions P (IR(r), IT(r)|p,h)
may be obtained by first computing the joint conditional
probability as:

PðIRðrÞ; IT ðrÞ; f ðrÞjp; hÞ ¼ PðIRðrÞ; IT ðrÞjf ðrÞ; p; hÞPðf ðrÞjp; hÞ
ð7Þ

and then marginalizing over f (r):

P ðIRðrÞ; IT ðrÞjp; hÞ ¼
XM

k¼1

PðIRðrÞ; IT ðrÞjf ðrÞ ¼ k; p; hÞ

� P ðf ðrÞ ¼ kjp; hÞ ð8Þ

Defining the likelihood vk (r,h) as:

vkðr; hÞ ¼ P ðIRðrÞ; IT ðrÞjf ðrÞ ¼ k; hÞ
¼ P nðIRðrÞ � IT ðr � Uðr; hkÞÞÞ ð9Þ

where Pn is the noise distribution (assumed known), and
using the fact that the first term of the summation in (8)
is independent of p given f (r) = k and h, so that

P ðIRðrÞ; IT ðrÞjf ðrÞ ¼ k; p; hÞ ¼ P ðIRðrÞ; IT ðrÞjf ðrÞ ¼ k; hÞ
¼ vkðr; hÞ ð10Þ

and also considering that P (f (r) = k|p,h) = pk (r) one ob-
tains that
r disparity (see text).



626 E. Arce, J.L. Marroquin / Image and Vision Computing 25 (2007) 623–636
P ðIRðrÞ; IT ðrÞjp; hÞ ¼
XM

k¼1

vkðr; hÞpkðrÞ ¼ vðr; hÞ � pðrÞ ð11Þ

Note that in this expression the discrete variables {f (r),
r 2 L} do not appear, since we have marginalized the con-
ditional distribution (7) over them. This is the key step that
allows one to have a differentiable cost function that de-
pends only on the continuous variables p and h. Once these
are estimated, the f variables may be easily obtained, as
shown below.

Usually, Pn is assumed to be Gaussian; however, in
the stereo problem, there may be large differences of
intensity between corresponding points in the two images,
e.g., due to specularities, which may produce a large
number of outliers; for this reason, a better model is a
distribution with heavier tails. At the same time, it is
important that small intensity errors be penalized in an
adequate way. A function that satisfies both require-
ments is the following one:

vkðr; hÞ ¼
a

1þ ajnkðrÞj
ð12Þ

with nk (r) = (IR � IT (r ± U (r,hk))), and where a is a
parameter that depends on the noise standard deviation.

From (5) and (11) we get that,

P ðp; hjIR; IT Þ ¼
1

Z
exp½�Uðp; hÞ� ð13Þ

with

Uðp; hÞ ¼ �
X

r

logðvðr; hÞ � pðrÞÞ þ
X

c

V CðpÞ

� log P hðhÞ ð14Þ

where VC (p) is a potential function which depends on the
values of the p field at the sites that belong to the clique
C (see [31] for details) and where Ph (h) are prior con-
straints over h.

In our model we use a first-order neighborhood, with
cliques of size 2, so that each clique corresponds to a hor-
izontal or vertical pair of adjacent pixels. For the potentials
VC, it is important to use functions that do not penalize too
much the discontinuities in the p field – which correspond
to model changes – since otherwise the minimization pro-
cess might prefer to bend a spline model (see below) instead
of producing a correct discontinuous solution. Thus,
instead of the quadratic potentials that are normally used,
we use a vectorized Huber potential [32] given by:

V CðpÞ ¼ hðDpÞ ¼
XM

k¼1

hðDpkÞ ð15Þ

where

hðDpkÞ ¼
Dp2

k if jDpkj 6 0:5

jDpkj � 0:25 if jDpkj > 0:5

�
ð16Þ

where Dp = p (r) � p (s), where r and s are neighboring sites
in L.
The choice of the right or left image as the reference
image is somewhat arbitrary. In fact, it is better to consider
that one has two p fields pR, pL, which are obtained when
the right (respectively, the left) image is taken as the refer-
ence image. These fields may be used to implement a con-
sistency constraint [42,3] that improves the robustness of
the model. This constraint may be expressed as:

pL
k ðrÞ � pR

k ðr � Uðr; hkÞÞ ð17Þ
At the same time, this constraint allows one to introduce an
explicit occlusion model; to do this, we consider R0 (i.e.,
model 0) to correspond to occluded areas, and consider
that the consistency constraint (17) should have a weight
proportional to one minus the probability of occlusion
p0 (r). Thus, one finally obtains the following posterior
energy function that depends on the two fields pL,pR and
the parameter vectors h:

UðpL; pR; hÞ ¼ �
X
r2L

logðpLðrÞ � vLðr; hÞÞ

�
X
r2L

logðpRðrÞ � vRðr; hÞÞ

þ k1

X
hr;si

hðpLðrÞ � pLðsÞÞ

þ k1

X
hr;si

hðpRðrÞ � pRðsÞÞ

þ k2

X
r2L

X
k>0

pL
k ðrÞ � pR

k ðr � Uðr; hkÞÞ
� �2

� 1� pL
0 ðrÞ

� �
þ k2

X
r2L

X
k>0

pR
k ðrÞ � pL

k ðr þ Uðr; hkÞÞ
� �2

� 1� pR
0 ðrÞ

� �
ð18Þ

where vL is the likelihood obtained taking as reference the
left image IL, vR the likelihood taking as reference the right
image IR and k1 is a parameter that controls spatial coher-
ence of the p-fields. The last two expressions in (18) are the
inconsistency terms; these reflect the fact that the p-fields
should be coherent in all the regions except in the occluded
regions which are denoted by the label f (r) = 0, and where
vL

0 ðr; hÞ, vR
0 ðr; hÞ are assigned constant values. These terms

are controlled by k2 and weighted by the evidence that
any pixel r does not belong to the occluded regions given
by pðrÞL0 or pðrÞR0 .

To obtain optimal estimators for fL*, fR*, the label fields,
we use the following two-step procedure:

(1) Find the MAP estimators pL*, pR*, h* for pL, pR, h:
pL�pR�h� ¼ arg max
pL ;pR ;h

P ðpL; pR; hjIR; ILÞ ð19Þ
(2) Find f L*, f R* as the maximizers of
P (f L, f R|pL = pL*,pR = pR*,h = h*, IR, IL)

The first step is equivalent to the minimization of
U (pL,pR,h) subject to the constraints (4) for pL (r), pR (r)
for all r 2 L; while the second step consists simply of find-
ing the mode for each discrete measure pL* (r) and pR* (r) in
a decoupled way:
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f L�ðrÞ ¼ arg max
k

pL
k ðrÞ

f R�ðrÞ ¼ arg max
k

pR
k ðrÞ

The computational burden, thus, lies on the first step, but
since (18) is differentiable this minimization may be carried
out very efficiently using a constrained minimization algo-
rithm called ‘‘Gradient Projection Newtonian Descent’’
[31].

An important implementation detail is that the partial
derivatives of vk (r,h) with respect to h must be computed
with high accuracy. Since they involve the evaluation of
the gradient of IT at non-integer locations, the best way
is to use spline interpolation for IT, so that the derivatives
may be evaluated analytically.
3. Parametric model

Many disparity estimation algorithms, as in [9,24,25], use
constant models (which correspond to fronto-parallel
planes) for computing disparity maps. Moreover, most of
them use discretized disparities usually with a separation of
one pixel. In many real stereo pairs, particularly when they
portray natural scenes, one has, in each region, not a con-
stant – or even a smooth – disparity, but rather a slowly vary-
ing envelope with high-frequency and low-amplitude
variations. This situation cannot be modeled adequately by
a piecewise constant integer-valued disparity.

In this work, we propose a dual membrane model
(DMM) to estimate disparities. It is defined by the sum
of two models:

Uðr; hkÞ ¼ U1 r; hð1Þk

� �
þ U2 r; hð2Þk

� �
ð20Þ

The first model corresponds to a spline model, defined as a
linear combination of basis functions:

U1 r; hð1Þk

� �
¼
XJ

j¼1

hð1Þkj NjðrÞ ð21Þ

where {Nj, j = 1, . . . ,J} are B-spline functions [30], trans-
lated to a jth node of a coarse sub-grid superimposed on
the reference image IR, called spline-grid:

Njðx; yÞ ¼ B2 x� xj

M

� �
B2

y � yj

M

� �
ð22Þ

where (xj,yj) are the jth coordinates (in pixels) of a node in
this sub-grid, n is a scale factor indicating the distance be-
tween nodes in this grid, and B2 is given by

B2ðxÞ ¼

1
2
ð1:5� 2x2Þ if jxj 2 ½0; 0:5�

1
2
ðx2 � 3jxj þ 2:25Þ if jxj 2 ½0:5; 1:5�

0 if jxj > 1:5

8><
>: ð23Þ

The coefficients hð1Þkj and the B-spline functions describe a
surface whose rigidity may be controlled by imposing a
Gibbsian prior on h(1), of the form:
P h hð1Þ
� �

¼ 1

Zhð1Þ
exp �g1

XM

k¼1

X
hu;vi

hð1Þku � hð1Þkv

� �2
" #

ð24Þ

where the second sum is taken over the nearest neighbor pair
of nodes Æu,væ in the spline-grid. This model allows smooth
variations inside each region Rk controlled by g1. One advan-
tage of this model is that it extrapolates disparity values as
constants outside their support regions, and hence is less
prone to produce spurious interactions with other regions.

The second model in (20) is a classical pixel-to-pixel
membrane given by,

U2 r; hð2Þk

� �
¼ hð2Þk ðrÞ ð25Þ

i.e., hð2Þk denotes a scalar field. As in U1, a prior was im-
posed on h(2) of the form:

P h hð2Þ
� �

¼ 1

Zhð2Þ
exp �g2

XM

k¼1

X
hr;si

hð2Þk ðrÞ � hð2Þk ðsÞ
� �2

" #
ð26Þ

where g2 is a parameter that controls the rigidity of the
pixel-to-pixel membrane and Ær, sæ are the nearest neighbor
pairs of pixels.

To verify the DMM performance, two experiments were
made using the stereo pair shown in Fig. 4. The first one
consists in estimating the disparity field by means of a
pixel-to-pixel membrane model only. The plot in Fig. 2(a)
and (b) shows the profiles (row 128) of the disparity maps
obtained by setting g2 in (26) to 1 and 20, respectively.
These plots show that if one sets g2 to a large value, in
order to control intensity variations in the images due to
noise, mostly flat disparity regions with small variations
are obtained. In contrast, if a small value is set, noise
appears on the disparity surface. In the second experiment,
only the spline membrane was applied (yielding a model
similar to the one in [42]); Fig. 2(c) shows how this model
estimates better global smooth disparity variations, but
loses the disparity texture in the surface of the pineapple.
Finally, in Fig. 2(d) the behavior of the DMM is shown,
and one can appreciate that the correct smooth behavior,
adequate noise elimination and appropriate modeling of
the high-frequency variations are simultaneously achieved.

Fig. 3 illustrates the behavior of this model for two ste-
reo pairs containing different types of surfaces; in panels (a-
2) and (a-3), we show the f-field (segmentation; occlusion
regions indicated in black) and the 3D-reconstruction using
the obtained disparity map for the case where the objects in
the scene are composed by planar (not fronto-parallel)
surfaces. Panel (b) shows the results in the case when the
objects are composed by curved surfaces; panel (b-3) is
the 3D-reconstruction (obtained with a simple pinhole
camera model).

Fig. 4 illustrates the case where the objects are more
complex; the parametric disparity surfaces obtained U1,
U2 are shown in panels (c) and (d), after finding the optimal
values for h(1), h(2) for the region Rk that corresponds to the
pineapple. Panel (e) shows the complete disparity map;



Fig. 2. (a) Pixel-to-pixel disparity map with g2 = 1, (b) pixel-to-pixel disparity map with g2 = 20, (c) spline membrane, and (d) DMM disparity map.

Fig. 3. (a-1) Reference image, (a-2) segmentation, and (a-3) 3D-reconstruction (planar surfaces). (b-1) Reference image, (b-2) segmentation, and (b-3)
3D-reconstruction (curved surfaces).
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dark regions correspond to occluded areas. Panel (f) shows
the 3D-reconstruction.

One important question is the criterion for selecting the
number of models M. Fortunately, the precise value for this
parameter is not critical, provided that there are sufficient
models to account for all the smooth regions in the image.
If one specifies more models than the ones that are strictly
needed, the computational complexity will increase, but
the final result will not be affected, because the extra models
will either be automatically eliminated (i.e., will get consis-
tently low p values) or a smooth region will be described by
more than one model (see, for example, Fig. 3(a)); in this
case, since the dual membrane models are flexible, they will
automatically bend, so that no spurious discontinuities
appear at the interfaces. In the experiments reported here,
in order to keep a reasonable computational complexity,
an approximate value for M was chosen manually in each
case, based on a rough estimation of the number of smooth
regions present in each image.

4. Edge information

An important issue in stereo disparity estimation is the
precise localization of depth discontinuities. It is difficult to
do this using only the intensity differences between the two
images, since, in many cases, in particular when the intensity



Fig. 4. (a, b) Stereo pair, (c) U1, (d) U2, (e) disparity map, (f) 3D-reconstruction.
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of the occluded regions is relatively homogeneous, the dis-
parity may be ambiguous. As in [40], one may tackle this
problem by incorporating the prior constraint that the depth
discontinuities coincide with significant intensity edges in
most places. In the context of our model, this may be done
by including a term that biases the p distributions toward
high entropy configurations (i.e., distributions that are close
to uniform) whenever an intensity edge is present, so that a
change in the locally dominant model (the one that corre-
sponds to the mode of p) is facilitated. In particular, we
add the following terms to the energy function:X

r2L

XM

k¼1

½ðl1 þ l2ÞBRðrÞ � l2�pR
k ðrÞ log pR

k ðrÞ

þ
X
r2L

XM

k¼1

½ðl1 þ l2ÞBLðrÞ � l2�pL
k ðrÞ log pL

k ðrÞ ð27Þ

where BL (r) = 1 if there is an intensity edge at pixel r in the
left image (respectively, right), and BL (r) = 0 otherwise (we
compute BL (r) and BR (r) using a Canny edge detector
[27]). This term works as follows: if BL (r) = 1, it will bias
the distribution pL (r) towards high entropy configurations
(i.e., to values closer to the uniform distribution
pL

k ðrÞ ¼ 1=M for all k), thus facilitating the label changes at
those sites. If BL (r) = 0, on the other hand, this term will bias
pL (r) towards low entropy (peaked) configurations. l1 and
l2 are positive parameters that control the influence of these
terms.
5. Results and comparisons

5.1. Disparity precision

An important contribution of our method is the high
disparity precision it produces, to subpixel level. To vali-
date this fact, we made two experiments; one with a syn-
thetic image, where a quantitative performance
evaluation is possible, and the other with a stereo pair cor-
responding to a real scene. In both cases, we compare the
method proposed in this paper (HMMF) against two algo-
rithms. One that estimates disparity to subpixel level by
computing correlation or sum of squared difference
(SSD) using an adaptive window [9] (AW-SSD); the other
is one of the best algorithms reported in [34] which mini-
mizes a global function using the graph-cut method (GC)
[24,26], using a discrete disparity space.

The first experiment corresponds to a synthetic stereo
pair with a disparity pattern formed by a ramp whose aver-
age disparity gradient, ADG (computed only on the region
where the disparity ramp is localized), is equal to 0.1243.
Gaussian noise (r = 1.5) was added to the right image.

Fig. 5 shows the results obtained using the best set of
parameters for each method. One can see on panel (a) that,
although AW-SSD computes high-precision continuous
disparity values, it is very vulnerable to noise, mostly in
the constant disparity region; in (b) one can see that GC
strongly discretizes the disparity, increasing in this way
the RMS error (see also Fig. 7); finally, HMMF, panel
(c), obtains a better approximation everywhere. The overall
processing time required to process the 256 · 256 synthetic
stereo pair by each one of these algorithms is shown in
Table 1. The algorithm was implemented in C++ under
Windows-XP (TM). One can see that AW-SSD is very fast,
but the computed disparity map is very noisy. On the other
hand, GC takes 12 times more than HMMF for the dispar-
ity discretization used.

In Fig. 6 we present a quantitative evaluation of the per-
formance of the three algorithms analyzed, for different
values of the corresponding regularization parameter
(noise variance r for AW-SSD, k for GC and k1 for



Fig. 5. Disparities maps obtained by: (a) AW-SSD; (b) GC; (c) HMMF (see also Fig. 7).
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HMMF). This evaluation is made with respect to the com-
puted ADG in the ramp of the test image (which measures
the subpixel precision produced by each algorithm), and
with respect to the average root mean squared (RMS) error
[34,35], between the computed disparity dC (x,y) and the
ground-truth disparity dT (x,y):

R ¼ 1

N

X
ðx;yÞ
jdCðx; yÞ � dTðx; yÞj2

 !1=2

ð28Þ

where N is the total number of pixels.
In the case of AW-SSD, r was varied from 1.1 to 2.0,

and in each one of these values the size of an adaptive win-
dow was varied from three pixels minimum to 20 pixels
maximum, the results are shown in plot (a) of Fig. 6; plot
(a-1) is the ADG and plot (a-2) is the RMS error. One
can see that although the ADG values are very small (sub-
pixel level), the RMS errors are large, compared with the
results of GC and HMMF.
Table 1
Processing time

Time

AW-SSD 6.25 min
GC 3.75 h
HMMF 17.57 min
For GC, in theory, one may improve the precision by
using a finer (subpixel) discretization of the disparity at
the expense of increasing the computational complexity;
in this experiment, the precision of the disparity discretiza-
tion was set to 0.1 pixels; however, in order to reduce the
noise influence in the disparity estimation, one must
increase the value of the regularization parameter k, caus-
ing ADG values to be higher than the true value (plot (b-
1)), promoting piecewise constant solutions. This phenom-
enon limits the performance of GC in terms of RMS error
(plot (b-2)). This effect is visible in more detail in Fig. 7: for
high values of k, the GC algorithm is resistant to noise, but
the computed disparity is heavily discretized, regardless of
the value of the discretization precision (Figs. 7(a) and (b)),
whereas for low values of k the algorithm is very vulnerable
to noise (panel (c)).

The results obtained by HMMF are shown in plot (c-1)
and (c-2) of Fig. 6, and in panel (d) of Fig. 7; one can see
that the ADG and RMS values remain practically constant
for all the range of the regularization parameter (k1 in (18)),
being possible in this case to reduce the RMS value up to
0.1286 (more than two times lower than GC).

In the next experiment, we test qualitatively the perfor-
mance of these algorithms with a real stereo pair taken in
normal conditions and containing more complex objects.
This stereo pair contains a pineapple, see Fig. 4. One



Fig. 6. ADG and RMS errors obtained by (a) AW-SSD, (b) GC, and (c) HMMF.
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can see that the pineapple’s crest and body are composed
by irregular surfaces, making it specially difficult to esti-
mate the disparity map and occluded regions. The dispar-
ity maps estimated by AW-SSD, GC, and HMMF are
shown in Fig. 8. In Fig. 9, we plot the corresponding dis-
parity profiles of row 128. One can see in the graphs how
HMMF, using the dual membrane parametric model, esti-
mates with high precision the complex disparity surface of
the pineapple’s body and the smooth surface of the table-
cloth (the black regions correspond to occluded regions).
In the case of GC, the disparity is strongly discretized,
mainly on the pineapple’s body. It is not possible to
increase the precision of GC, since it would be necessary
to decrease the value of its regularization parameter, pro-
ducing noisy disparity maps. Finally, the profile obtained
by AW-SSD shows that in order to estimate appropriately
disparities on the pineapple’s body, one has to reduce the
noise parameter, causing noisy disparity values on the
surface of the tablecloth.

5.2. Standard benchmarks

We also evaluated the performance of the proposed
algorithm, using a set of stereo images available in the
web site: www.middlebury.edu/stereo. These stereo pairs
have available disparity ground truth, including their
occluded regions, being possible to make quantitative com-
parisons. We use the metric described in (28) and the Per-
centage of Bad Matching Pixels metric (BMP) [34,35],
B ¼ 1

N

X
ðx;yÞ
ðjdCðx; yÞ � dTðx; yÞj > ddÞ ð29Þ

to the algorithm evaluations, where dd is a disparity error
tolerance; for the experiments in this paper we use dd = 1.0.

We tested four stereo pairs; three of them, ‘‘Venus’’,
‘‘Sawtooth’’, and ‘‘Tsukuba’’ are color images that were
transformed to monochromatic images for this compari-
son, since there are many different transformations that
may be applied to the RGB components, affecting the
results obtained by the algorithms; the third one is a mono-
chromatic image, ‘‘Map’’.

It is important to note that the available ground-truth
disparity for these stereo pairs is discretized to integer dis-
parity values in all cases; therefore, the advantages of
HMMF, in the sense of being able to compute high-preci-
sion disparities, are not apparent in this comparison, and,
moreover, it becomes a liability, since the comparison is
bound to favor (incorrectly) algorithms (such as GC) which
estimate only integer disparities.

The comparisons were made with respect to some recent
algorithms reported in [34]: algorithms that use as match-
ing cost absolute differences (AD) and squared differences
(SD) followed by a winner-take-all optimization; global
algorithms as dynamic programming (DP) [28], scanline
optimization (SO) [36], graph cuts (GC) [24,25], simulated
annealing (SA), and Layered Stereo (LS) [42]. We tested
also some variants of these algorithms that use as matching
cost the Birchfield and Tomasis’s measure [37]; aggregation

http://www.middlebury.edu/stereo


Fig. 7. Center profile of the disparity maps obtained by GC and HMMF: (a) GC: disparity discretization s = 1.0, k = 100; (b) GC: disparity

discretizations = 0.1, k = 100; (c) GC: disparity discretization s = 0.1, k = 5; (d) HMMF.

Fig. 8. Disparity maps obtained by AW-SSD, GC, and HMMF.
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methods: using different window sizes, minifilters [38],
binomial filters or membrane diffusion [39].

The results obtained in these experiments by the algo-
rithms and by the method proposed in this paper (HMMF)
are plotted in Fig. 10; we show only the best results from
each variant of the algorithms. The average for the two
metrics RMS and BMP for the four stereo pairs are shown
in Fig. 11. In this set of experiments, we include two ver-
sions of the HMMF algorithm: one using the DMM
(HHMF-dmm), and the other one using as a parametric
model horizontal planes Uðr; hkÞ ¼ hk; hk 2 R (HMMF-
hp). The purpose of including these different versions was
to verify the behavior of HMMF using a similar approach
to the one used by the other algorithms (piecewise constant
disparity models).

The best set of parameter values for the HMMF-dmm
algorithm are shown in Table 2; in the case of the
HMMF-hp, the same values were used, except for the
membrane parameters, which are not used. Table 3 shows
numerical values only for the RMS error, since the
approach here proposed emphasizes in the precision of
the disparity map values. One can see that the performance
of HMMF (in both versions HMMF-dmm and HMMF-
hp) is highly competitive; the difference between GC and
HMMF is minimal in the RMS metric, and it is also min-
imal between LS and HMMF in the BMP metric, in spite



Fig. 9. (Top) Profile disparity maps obtained by GC and AW-SSD; (bottom) disparity profiles of HMMF.

Fig. 10. RMS error and BMP error for ‘‘Venus’’, ‘‘Sawtooth’’, ‘‘Tsukuba’’ and ‘‘MAP’’ stereo pairs.

Fig. 11. Average error for RMS and BMP.
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Table 2
Main parameter values for the HMMF algorithm

Parameter of Venus Map Sawtooth Tsukuba

g1 Spline membrane 50 50 50 100
g2 Pixel–pixel membrane 50 50 50 100
a Likelihood 0.2 0.2 0.2 0.2
s Huber potential 0.5 0.5 0.5 0.5
l1 Disparity edge 0.8 0.0 0.8 1.0
l2 Disparity non-edges 0.02 0.0 0.02 0.01
k1 Spatial coherence 0.2 1.5 0.5 0.3
k2 Map consistency 0.1 0.1 0.1 0.1
v0 Occlusion likelihood 0.4 0.4 0.4 0.01
Regions 7 4 7 9

Table 3
RMS error using the best parameters for each image, and the minimum (best) value in each column is shown in bold

Venus Map Sawtooth Tsukuba

HMMF-mem 0.6835 0.8549 0.6932 0.8706

GC 0.719704 0.796838 0.645627 0.984643
HMMF-ph 0.7578 1.1311 0.7474 0.95195
AD 0.784794 1.034352 0.609795 1.333782
SD 1.52871 1.023509 0.592214 1.460442
SO 1.671218 1.444221 1.211812 1.149207
DP 1.380688 2.009353 1.479986 1.07093
SA 3.378821 1.058696 1.826139 2.109155

Fig. 12. Results obtained for the stereo pairs: ‘‘Venus’’, ‘‘MAP’’, ‘‘Sawtooth’’, and ‘‘Tsukuba’’; first column by HMMF-mmd, second column by HMMF-
hp, third column by GC, and last column ground-truth disparity maps.
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Fig. 13. BPC error for HMMF and GC when vertical displacements
occur.
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of the provided discretized ground truth. The disparity
maps obtained by the two algorithms HMMF (HMMF-
dmm, HMMF-hp) and GC for these stereo pairs are shown
in Fig. 12, together with the corresponding ground truth.

An important aspect about the real stereo pairs used in
these experiments is that they were taken in very controlled
conditions (see [34] for details). In practical situations, it is
possible that small vertical displacements occur; therefore
algorithms must be, in some way, robust with respect to
these displacements. In our approach, this robustness is
easily incorporated, simply by making the models U (r,hk)
vector-valued, so that vertical disparities are automatically
corrected. The relative robustness of GC and our approach
is illustrated in Fig. 13, which measures the increase in
BMP error when an artificial vertical disparity is intro-
duced in the ‘‘MAP’’ stereo pair. As one can see, the per-
formance of our algorithm is practically insensitive to
these vertical displacements.

6. Conclusions

In this paper, we have proposed a new algorithm for dis-
parity estimation. It is based on a new Bayesian formulation
of the image segmentation model [31] that uses a dual mem-
brane to model disparities. It allows one to estimate with very
high precision (subpixel level) disparity maps, since the
DMM can model disparities that vary smoothly, and at
the same time, small high-frequency disparity variations in
the same region. The proposed algorithm is very robust with
respect to vertical misalignments, allowing one to process
real stereo pairs which were taken in realistic conditions,
with excellent results. Another important contribution is
the estimation, using the same energy function (18), two p-
fields (one time taking as reference image the left component
and the other the right one), allowing one, in this way, to
check consistencies in both disparity maps, increasing the
precision of the computed disparity map, and also, estimat-
ing explicitly the location of occluded regions and enforcing
the correspondence between intensity and disparity
discontinuities.

We have shown that the algorithm presented here repre-
sents a significant improvement over other state-of-the-art
schemes in terms of subpixel precision of the disparity esti-
mates, a feature that may be relevant in applications such
as optical metrology, 3D digitalization, aerial photogram-
metry, etc. The presented method is also robust with
respect to noise and vertical misalignments, while main-
taining a competitive performance on standard bench-
marks with discretized ground-truth disparities.
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