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Abstract. A healthy diet is crucial for maintaining overall health and for control-

ling food-related chronic diseases, like diabetes and obesity. Proper diet manage-

ment however, relies on the rather challenging task of food intake assessment and 

monitoring. To facilitate this procedure, several systems have been recently pro-

posed for automatic meal assessment on mobile devices using computer vision 

methods. The development and validation of these systems requires large 

amounts of data and although some public datasets already exist, they don’t cover 

the entire spectrum of inputs and/or uses. In this paper, we introduce a database, 

which contains RGB images of meals together with the corresponding depth 

maps, 3D models, segmentation and recognition maps, weights and volumes. We 

also present a number of experiments on the new database to provide baselines 

performances in the context of food segmentation, depth and volume estimation. 

1 Introduction 

Automatic diet assessment refers to the use of information technology for the ad-hoc 

translation of food intake into nutrient information in an accurate and intuitive way. 

Over the last years there have been a number of systems that use visual meal infor-

mation to output nutrient content, mainly calories and carbohydrates [1-4], with only 

few of them being validated by end-users [5, 6]. Typically, once the visual information 

is available, a number of computer vision steps is executed: food detection, segmenta-

tion, recognition, and volume estimation. By knowing the food type and its volume and 

by using food composition databases the contained nutrients are estimated. Key element 

in the development and technical validation of the computer vision steps is the data 

availability. However, the currently available food image datasets addresses needs re-

lated to the food recognition step. 



Scope of the paper is to introduce a database that contains annotated and labelled 

RGB and RGB-D images from 80 different central-European meals served on a round 

dish accompanied by accelerometer data. Each meal consists of two to four different 

food items (e.g. vegetables, meat) of know weight, volume and nutrient composition.  

In the next sections, the database construction is presented, as well as the results of 

baseline methods for segmentation, depth and volume estimation. The newly intro-

duced database offers resources to improve the current methods, compare among dif-

ferent approaches and hopefully progress the field of automatic diet assessment. 

2 Food image datasets 

One of the first datasets to address food recognition is the PFID [7]. It includes 4545 

still images, 606 stereo image pairs, and 303 videos that cover a 360° angle around the 

food. It contains meals from 11 fast food restaurants that belong to 101 different food 

categories. In [8], the UECFOOD-100 was proposed: a dataset, which includes 9060 

Japanese food images across 100 classes. This dataset was extended in [9] with 156 

new classes (UECFOOD-256). In [10], a dataset of 50 classes with 100 Asian food 

images per class was introduced. The authors also presented preliminary results on food 

quantity estimation by using depth maps acquired through a Microsoft Kinect. In [11], 

the UNICT-FD889 was presented. The dataset intended to be used for near duplicate 

image retrieval and includes 3583 food images of real-life meals belonging to 889 clas-

ses, whereas in [12] the dataset was extended to 1200 classes and 4754 images. In [13], 

two new datasets to address food vs non-food classification were introduced, while in 

[14], a large-scale dataset with 101 classes and 1000 images per class was proposed 

(Food-101). The dataset was created by downloading images from the website food-

spotting.com. This dataset was then partially labeled and annotated to perform food 

segmentation and recognition. The same 101 classes have been considered in the 

UPCM Food-101 dataset [15], which includes images combined with a textual descrip-

tion. A smaller dataset named FooDD has been proposed in [16] and consists of 3000 

images of various meals acquired in restaurants under different illumination conditions. 

Finally, in [17], a dataset containing food images from, and geolocation of, six restau-

rants in Asia was presented. 

3 Data collection and processing 

Each of the 80 meals was placed on a table with a fully visible reference card next to it 

for color and geometric calibration. The acquisition procedure was conducted in the 

environment of a laboratory following two setups: i) constrained and ii) unconstrained. 

For each setup, the following systems were used: Intel® RealSense™ Camera SR300 

and GoCARB App [6] installed in a Samsung Galaxy S4. Finally, the LG Nexus 5X 

was used in order to estimate the ground truth. 



3.1 Constrained setup 

The dish was placed in a small table with a rotating bracket mount with limited 

degrees of freedom, in order to control distance and angle. The acquisition device was 

attached at the top of the bracket. Data were acquired at two different distances (40cm 

and 60cm) and four angles (0°, 30°, 60°, 90°). Thus, for each dish a total of eight cap-

tures / device was acquired. 

 Intel® RealSense™ Camera SR300: From the depth sensor, we got four different 

types of images per capture: 

1. A 24-bit RGB image at 1920×1080; 

2. A 16-bit depth 640×480 image, where the pixel values is the distance from 

the sensor in tenth of millimeters; 

3. A depth image aligned with the RGB one; 

4. An RGB image masked with the related aligned depth map. 

 GoCARB App installed in a Samsung Galaxy S4: From the GoCARB system for 

each capture we get a 4128×3096 RGB image and the information about calibration, 

as well as the gravity vector. 

3.2 Unconstrained setup 

In the unconstrained setup, the device was placed freely in front of the dish and data 

were acquired at a randomly chosen distance and angle in the range of 40cm to 60cm 

and 45° to 90° respectively. 

 Intel® RealSense™ Camera SR300: From the depth sensor, 200 consecutive RGBD 

frames at 10 fps were captured. 

 GoCARB App installed in a Samsung Galaxy S4: Three image pairs were captured, 

each of them with the characteristics mentioned in the constrained setup. 

Finally, approximately 50 images with resolution 4032×3024 were captured from all 

possible angles above the table (360° view) using the LG Nexus 5X. The images were 

used to build the ground truth 3D model of each meal. 

 

The acquisition information is summarized in Table 1. 

3.3 Data processing 

Image labeling and annotation: For a subset of the acquired RGB and RGB-D images, 

segmentation and recognition maps are provided after manual manipulation. Details are 

presented in Table 1, while a sample of the proposed database in given in Fig. 1.  

 

Ground truth estimation: The set of photos obtained with the LG Nexus 5X has been 

used to create a 3D reconstruction of the dish, through the online Autodesk Recap 360 

service. The resulting 3D models were manually cleaned, rotated to a horizontal align-

ment, and rescaled by using the real size as obtained from the calibration card. In this 

clean model, we manually separated the food items. Hence, we have computed the in-

dividual volumes, in order to use it as ground truth for volume estimation algorithms. 



Table 1: A summary of the acquired RGB and RGB-D data, along with the provided maps. For 

each meal served on a round dish the weight and volume of each food items is available, as 

well as information from smartphone’s accelerometer.   

Sensors Setup Images 
Distance 

(cm) 
Angle 

Maps 

Recognition Segmentation 

Intel® Re-

alSense™ 

Camera 

SR300 

Constrained 8 RGB-D 

40 

0° -  

30° -  

60° X 1 

90° X 1 

60 

0° -  

30° -  

60° X 1 

90° X 1 

Unconstrained 200 RGB-D [40-60] [45° -90°] X 2 

Samsung 

Galaxy S4 

(using 

GoCARB) 

Constrained 8 RGB 

40 

0° -  

30° -  

60° X 1 

90° X 1 

60 

0° -  

30° -  

60° X 1 

90° X 1 

Unconstrained 6 RGB [40-60] [45° -90°] X 1 

LG Nexus Unconstrained ~50 RGB [40-60] 360° view X 1 

Total/ dish ~272 (208 RGB-D; ~64 RGB) X 12 

Total for the 80 dishes 21807 (16640 RGB-D; 5167 RGB) X 960 

4 Baseline Methods 

The images of the proposed database were used to benchmark some state of the art 

methods for food segmentation, depth and volume estimation. 

4.1 Segmentation 

Food segmentation is a challenging task due to the great variability in food types, shapes 

and colors. Here, we investigate whether the use of depth-map information could im-

prove the segmentation result. To this end, we applied a method similar to [18] and 

compared the results with and without considering the depth as input. The method con-

sists of two main steps: border maps extraction by a convolutional neural network 

(CNN) and region growing segmentation. In our experiments, we altered the first step 

by utilizing different CNN architectures (SegNet [19] and U-Net [20]) and using the  

 



  
  

  
 

Fig. 1. On the top-left, the RGB acquisition performed with Real Sense at 40cm and 90° (top 

view). On the top-right, the corresponding depth map. On the bottom-left, the segmentation map 

for the image in the top-left. On the bottom-right, the plate map for the same images, got under 

the same constrains. Intensities were rescaled for visualization. 

 

depth map as additional input. Specifically, the top view (40cm and 90°) acquisition 

performed with Intel® RealSense™ Camera SR300 was used, after being inverted to 

represent the distance from the table. Finally, all the data have been normalized and 

automatically cropped to 256×256 by employing the plate map. We used 60 images for 

training, 10 for validation and 10 for testing. To increase the image variability, we aug-

mented the dataset by considering two flips and four rotations. The results, confirm that 

depth-map information can reduce the error for borders extraction step and conse-

quently for segmentation. Online augmentation (column AUG RGB-D in Table 2), has 

been performed by randomly modifying for each image at each iteration of the training 

data. Specifically, we add a random number from a normal distribution with mean 0 

and standard deviation 0.01, to the color channels, while we multiply the depth map 

with a random number with mean 1 and standard deviation 0.1. The metrics used to 

assess the performance are the same used in [18]. We tested different architectures (Se-

gNet, Unet), loss functions (mean square error - MSE and mean absolute error - MAE) 

and batch normalization strategy (per feature-map, mode 0; per batch, mode 2). Best 

results have been achieved with Unet, with no batch normalization e by training the 

CNN with online augmentation. As expected the best result has been obtained with 

depth information, moreover data augmentation with the smallest standard deviation 

has increased the training generalization. 



Table 2. Segmentation results (MSE: Mean square error; MAE: Mean absolute error). 

CNN Loss 
AUG 

RGB-D 

RGB RGB-D 

Min 

Fscore 

Total 

Fscore 

Min 

Fscore 

Total 

Fscore 

Segnet MSE No 0.7329 0.9326 0.7059 0.9288 

Unet MAE No 0.6889 0.9268 0.7351 0.9342 

Unet MSE No 0.6875 0.9247 0.7332 0.9328 

Unet MAE Yes 0.6893 0.9281 0.7426 0.9369 

4.2 Depth estimation 

Calculating the depth of a food image is a significant component in understanding the 

3D geometry of a meal, which is essential for food volume estimation. However, depth 

prediction is usually performed by stereo images or motion as in [21]. Here, we present 

a method that performs depth estimation by using just one RGB image, as input of a 

CNN. The method is inspired by [22], although some modifications have been made to 

adapt it to our problem. The considered task focuses on the estimation of the depth of 

a near distance objects (within 1 meter), whereas the scenarios in [22] range within 

several meters. The images acquired by the Intel® RealSense™ Camera SR300 in un-

constrained setup were used and specifically two per dish. Images from 60 dishes pro-

vides data for training, 10 for validation and 10 for testing resulting into 120 images for 

training, 20 for validation and 20 for testing. The training data were augmented by flip-

ping the images left-to-right. The chosen network architecture is similar to Segnet-

Basic [19], which contains four encode convolutional layers and four decode convolu-

tional layers, respectively. In details, 64 feature maps are included in each convolu-

tional layer. The feature maps output from the decoder layer are fed to a sigmoid acti-

vation function for depth prediction. We use the mean absolute difference (MAD) as 

the loss function, which features the depth value between the estimated depth map and 

the ground truth from the depth sensor. 

Table 3 reports the quantitative comparison of the depth prediction on the proposed 

dataset, where only the pixels inside the plate are evaluated. Apart from MAD value, 

the absolute relative difference (ARD) with respect to ground truth is also provided for 

the sake of clarity. As expected, in food depth prediction scenario, the result obtained 

using standard algorithm of [22] shows relatively poor performance. However, by using 

the proposed method, the performance is significantly improved. For further demon-

stration, the prediction result performed by our method is shown in Fig. 2(b), revealing 

a good agreement with the ground truth depicted in Fig. 2(a). 

Table 3. Comparison on the proposed dataset (MAD: Mean absolute difference; ARD: Abso-

lute relative difference) 

Method MAD (mm) ARD (%)  

NYU [22] 37.09 7.53 

Proposed 8.64 1.76 



  

Fig. 2. (a): depth map captured by the Intel® RealSense™ Camera SR300; (b): depth map pre-

dicted by the proposed network. Color bar is in meter 

4.3 Volume estimation 

Knowing the food volume is critical to estimate its nutritional value. In this experiment, 

we compare the performance of the GoCARB system in two different scenarios. As 

first we estimate the volume of each food item by reconstructing a 3D model as in [21]. 

The second experiment is aimed to assess the importance of depth map in volume esti-

mation. We replace the depth estimation step as calculated in [21] with the depth ob-

tained from the RGB-D images captured by depth sensor. In this case, we have to esti-

mate the vertical direction and the table plane from the depth map to calculate the vol-

ume. To do so, we modify the table plane estimation method of [21]. First, we detect 

the plate through RGB channels, then sample the depth map at its border, and fit a plane 

to the selected points to find the ellipse plane. To find the table plane, we select all the 

points outside of the plate, and shift the ellipse plane to their modal height. To measure 

the performance the mean absolute percentage error, as defined in [21], was used. 

In these conditions, the average error using stereo reconstruction was 13.8%, and 

14% using RGB-D images. The two methods provide comparable results, however it 

has to be noted that the RGB-D sensor baseline (distance between the two elements of 

the stereo reconstruction module) is quite small, reducing its accuracy, while already 

developed algorithms were employed without any prior optimization the specific prob-

lem. However, these results indicate that a monocular RGB-D image can replace stereo 

pairs for volume estimation without performance drop. 

5 Conclusions 

In this paper, we have introduced a new multimedia food database that contains images, 

depth maps, weight/volume measurements of served meals, nutrient content together 

with the corresponding annotations, labels and accelerometer data. Furthermore, the 

results of some baseline methods on food segmentation and depth/volume estimation 

have been presented.  
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