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ABSTRACT

The classification of food images is an interesting and
challenging problem since the high variability of the image
content which makes the task difficult for current state-of-
the-art classification methods. The image representation to
be employed in the classification engine plays an important
role. We believe that texture features have been not properly
considered in this application domain. This paper points out,
through a set of experiments, that textures are fundamental
to properly recognize different food items. For this purpose
the bag of visual words model (BoW) is employed. Images
are processed with a bank of rotation and scale invariant fil-
ters and then a small codebook of Textons is built for each
food class. The learned class-based Textons are hence col-
lected in a single visual dictionary. The food images are rep-
resented as visual words distributions (Bag of Textons) and a
Support Vector Machine is used for the classification stage.
The experiments demonstrate that the image representation
based on Bag of Textons is more accurate than existing (and
more complex) approaches in classifying the 61 classes of the
Pittsburgh Fast-Food Image Dataset.

Index Terms— Food Classification, Bag of Words, Textons

1. INTRODUCTION AND MOTIVATIONS

There is a general consensus on the fact that people love food.
Thanks to the great diffusion of low cost image acquisition
devices (e.g., smartphones), the food is nowadays one of the
most photographed objects; the number of food images on the
web is increasing and novel social networks for food lovers
are more and more popular.

Automatic food classification is an emerging research
topic, not only to recognize food images for the web and
social networks application domain (e.g., for advertising pur-
poses). Indeed, researchers (in different fields) study food
because of its importance under medical, social and anthro-
pological point of view. Food images can provide a wider
comprehension of the relationship between people and their
meals. Hence, automatic food classification can be useful to
build diet monitoring systems to combat obesity, by provid-
ing to the experts (e.g., nutritionists) objective measures to
assess the food intake of patients [1, 2]. On the other hand,
food classification is a difficult task for vision systems, and
offer an exciting challenge for computer vision researchers.
Food is intrinsically deformable and presents high variability

Fig. 1. Three different instances of the same food in the PFID
dataset [3].

in appearance; classic approaches used to classify images
perform very poorly on food images [3].

Several works have addressed the problem of food clas-
sification [2, 3, 4, 5, 6, 7]. As any emerging research topic,
most of the works propose, along with the classification algo-
rithm, a new dataset composed by various food classes. So,
despite many approaches have been published, it is difficult
to find papers where different techniques are compared on the
same dataset. This makes difficult to understand which are
the peculiarities of the different techniques and which is the
best method for food classification so far. For this reason, we
have tested our method on an existing and public food dataset
with clear testing protocol (i.e., the Pittsburgh Fast-Food Im-
age Dataset - PFID [3]) on which different state-of-the-art ap-
proaches have been tested [2, 3].

One of the first food classification method have been pro-
posed by Jimenez et al. [4]. The authors proposed a method
able to detect spherical fruits (e.g., oranges) in natural envi-
ronment. To this purposes they used range images, obtained
via a 3D laser scanner. Joutou et al. [5] used a Multiple Ker-
nel Learning SVM (MKL-SVM) to exploit different kinds
of features. They combined Bag-of-SIFT with Color His-
tograms and Gabor Filters to discriminate between images of
a dataset composed by 50 different food categories. Matsuda
et al. [6, 7] introduced a new dataset with food images be-
longing to 100 classes. In [6] they employed Bag-of-SIFT on
Spatial Pyramid, Histograms of Gradient, Color Histogram
and Gabor Filters to train a MKL-SVM after the detection of
candidate regions based on Deformable Part Models. In [7]
they extended their previous work including a ranking algo-
rithm to be used for image retrieval purpose.

As aforementioned, a public available benchmark dataset
for food classification is the Pittsburgh Fast-food Image
Dataset (PFID) [3]. This dataset is composed by 1098 food
images belonging to 61 different categories. Each food class
contains 3 different instances of the food (i.e., same food



Fig. 2. Six different point of view of one instance of food in the PFID dataset [3].

class but acquired in different days and in different restau-
rants - see Fig. 1), and 6 images of different viewpoints for
each instance (see Fig. 2). The main contribution of [3]
is the dataset itself. The authors provided both the bench-
mark dataset and the evaluation protocol for classification
and comparison purposes. As a baseline, in [3] are reported
the food classification results by employing representations
based on Color Histograms and Bag-of-SIFT, coupled with
linear SVM.

Considering the PFID dataset, Yang et al. [2] outper-
formed the baseline results using the statistics of pairwise
local feature in order to encode spatial relationship between
different ingredients. As first step, the Semantic Textons For-
est (STF) [8] approach is used to assign a soft label (distribu-
tion over ingredients) to each pixel in the image. Eight basic
ingredients categories have been considered: beef, chicken,
pork, bread, vegetable, tomato/tomato sauce, cheese/butter,
egg/other. Starting from the semantic segmentation of the
image, the authors computed and tested several features to
demonstrate the usefulness of encoding spatial relationships
of ingredients. Among the tested features, the best results
have been obtained by employing the so called OM features.
Employing these features the authors of [2] outperformed
both the baseline results presented in [3], as well as the global
ingredient representation (GIR) approach based on statistics
of food ingredients collected after semantic segmentation
with STF [2, 8]. The OM features encode the information
of the soft labeling (obtained with the STF) considering two
spatial positions of the food images. Moreover, this local
descriptor encodes the direction of the spatial co-occurrences
and the information of the soft labeling of the midpoint among
them.

Many of the aforementioned food recognition approaches
use a combination of different features [2, 5, 7, 6]. By ex-
ploiting multiple features it is possible to capture different as-
pects of food appearance (e.g., color, shape, spatial relation-
ships) and hence improve the recognition accuracy. Although
a number of food classification techniques have been pre-
sented in literature, we believe that texture features have been
not properly considered in this application domain. Look-
ing at images of food (see Fig. 1 and 2) it is straightforward
the association of food classification to a problem of texture
discrimination. Differently than one can expect, classic ap-
proaches for texture classification haven’t been taken into ac-
count as a baseline for comparison purpose with respect to
novel food classification techniques.

In this paper we demonstrate that textures are fundamen-
tal to properly classify different food items. Bag of Textons
model [9, 10] is employed to this aim. Images are processed
with the Maximum Response Filter Banks (MR) [9]. The
maximum response is taken on both orientations and scale of

the different filters to achieve invariance to these transforma-
tions. Hence, a small codebook of Textons [10, 11, 12] is built
for each food class. Then, the learned class-based Textons are
collected in a single visual dictionary and the food images are
represented as visual words distributions (Bag of Textons).
Finally, a Support Vector Machine is used for classification
purpose. To the best of our knowledge, Textons have never
been exploited for food classification. The experiments re-
ported in Section 3 point out that the Bag of Textons repre-
sentation is more accurate in recognizing food classes than
existing (and more complex) approaches [2, 3].

The remainder of this paper is structured as follows: Sec-
tion 2 presents the proposed approach to build the represen-
tation of food images, whereas in Section 3 the experimental
settings and the results are described. Finally, Section 4 con-
cludes the paper with hints for further works.

2. BAG OF TEXTONS BASED CLASSIFICATION

The Bag-of-Visual-Word paradigm (BoW) [13] is one of the
most used method to represent images for classification pur-
pose. Four main steps are involved in representing images:
feature detection, feature description, codebook generation
and image representation. Each of these four steps introduces
a variability on the final model used to represent the images,
and influences the overall pipeline as well as the results of the
classification. Different local feature descriptors can be ex-
ploited to generate the codebook. For instance, in [3] SIFT
has been used to test BoW paradigm on the PFID dataset.
Among the other descriptors, Textons [11] have been em-
ployed when the content of the images is rich of textures [9,
10, 12]. Since textures are one of the most important aspects
of food images, here we treat the classification of food as a
texture classification problem. In the learning stage, train-
ing images are convolved with a filter bank to compute fil-
ter responses. This feature space is quantised via K-Means
clustering and the obtained clusters prototypes (i.e., the vi-
sual vocabulary) are used to label each filter response (i.e.,
each pixel) of the training images. The distribution of Tex-
tons is then used to feed the SVM classifier and hence to build
the model to be used for classification purpose. During clas-
sification phase, test images are represented as distribution
on the pre-learned Textons vocabulary after filter bank pro-
cessing. Each test image, represented as Bag of Textons, is
then classified accordingly with the previous learned SVM
model. In our experiments we use the Maximum Response
filter bank [9] which is composed by filters (Gaussian, first
and second derivative of Gaussian and Laplacian of Gaussian)
computed at multiple orientation and scales. To achieve rota-
tional and scale invariance, the responses of the anisotropic



filters are recorded at the maximum response on both scales
and orientations (MRS4 filters). In this way, a very compact
4-dimensional vector for each color channel is associated to
every pixel of the food images. As suggested in [9], filters are
L1 normalised so that the filter responses lie approximately
in the same range. To achieve invariance to the global affine
transformation of the illumination, the intensity of the images
is normalised (i.e., zero mean and unit standard deviation on
each color channel) before the convolution with the MRS4 fil-
ter bank. Finally, the filter response r at each pixel is contrast
normalised as formalised in the following:

rfinal =
r
[
log
(
1 + ||r||2

0.03

)]
||r||2

(1)

Regarding the Textons vocabulary generation, differently
than the classic procedure where the feature descriptors ex-
tracted from all training images of the different classes are
quantized all together, here we consider a class-based quan-
tization [9]. First, a small codebook Dc with Kc Textons is
built for each food class c. Then, the learned class-based Tex-
tons vocabularies are collected in a single visual dictionary
D =

⋃
c Dc of cardinality K =

∑
c Kc, and the food images

are represented as visual words distributions considering the
vocabulary D. The rationale beyond this codebook genera-
tion is similar to the one presented in [14]. Each class-based
Textons vocabulary is considered suitable to encode textures
of a specific class of food and not suitable to encode the tex-
tures of the other classes; this is reflected in the image rep-
resentation in which all the class-based vocabularies are col-
lected in a single codebook D. Intuitively, when an image of
class c is encoded as Textons distribution considering the fi-
nal vocabulary D, the bins of the sub-vocabulary Dc are more
expressed than the bins related to the other sub-vocabularies
Dc′ , c′ 6= c, making the representation more discriminative.
The experiments reported in Section 3 show that, consider-
ing the PFID dataset, the class-based Textons representation
achieve better results than the one learned without consider-
ing the different food classes during the codebook generation.

For classification purpose, we use a multiclass SVM with
a pre-computed kernel by considering the cosine distance.
Given two Bag of Textons signatures SIi , SIj , the cosine dis-
tance dcos is calculated as following:

dcos
(
SIi , SIj

)
= 1−

SIiS
′
Ij√(

SIiS
′
Ii

)(
SIjS

′
Ij

) . (2)

The kernel is defined as:

kcos
(
SIi , SIj

)
= e
−dcos

(
SIi

,SIj

)
. (3)

3. EXPERIMENTAL SETTINGS AND RESULTS

The proposed method have been compared against the tech-
niques reported in [2, 3] on the PFID dataset [3]. As in [2, 3],
we follow the experimental protocol defined for the PFID
dataset [3]: 3-fold cross-validation using 12 images from two

Table 1. Class-based vs Global Textons Vocabularies. In all set-
tings class-based vocabulary achieve better results.

Vocabulary Size 610 1220 1830 2440
Class-Based Textons 27.9 % 29.1 % 29.4 % 31.3%

Global Textons 23.1% 25.3% 26.0% 26.2%

Fig. 3. Three different classes of the PFID dataset [3]. Left: Crispy
Chicken Breasts. Middle: Crispy Chicken Thighs. Right: Crispy
Whole Chicken Wing

instances of each class for training, and the 6 remaining im-
ages of the third instance of each class for testing. We em-
ployed the libSVM library [15] to assess the class-based Bag
of Textons representation described in the previous section.

As pointed out in [2], many foods items of the PFID
dataset have very similar appearances despite they belong
to different classes. For instance, in Fig. 3 different type of
chicken are considered as belonging to different classes, but
their discrimination is very difficult even for humans. Fol-
lowing the testing protocol in [2], we have also performed
tests by re-organizing the 61 PFID food categories into seven
major groups: Sandwiches, Salads & Sides, Chicken, Breads
& Pastries, Donuts, Bagels, and Tacos.

As first test, we have compared the class-based Textons
vocabulary with respect to the global one, i.e., the one ob-
tained considering all the feature descriptors of the different
classes all together during quantization. Table 1 reports the
results in terms of accuracy at varying of the vocabulary size
for the classification of the 61 classes of the PFID dataset.
The size of the vocabulary has been fixed by considering the
number of class-based Textons Kc to be learned for each food
class. We have considered Kc ∈ {10, 20, 30, 40} Textons
for each class c, corresponding to a final vocabulary size of
K ∈ {610, 1220, 1830, 2440}. As expected, increasing the
number of Textons, the classification accuracy improve. Nev-
ertheless, we do not have further improvements by consider-
ing more than 40 Textons per class. Note that the class-based
vocabulary achieve better results in all cases.

The comparison of the class-based Bag of Textons repre-
sentation (with Kc = 40) against to the others state-of-the-art
methods [2, 3] is shown in Fig. 4(a) and Fig. 4(b) for both the
61 classes and the 7 major classes respectively. The names
of the different methods are related to the original name used
by the authors in their papers [2, 3]. The chance recognition
rate is also indicated. The classification accuracy of the class-
based Bag of Textons representation was 31.3% for the 61
classes and 79.6% for the 7 major classes. Although its sim-
plicity, the class-based Bag of Textons representation achieve
much better results (> 20%) than the global BoW consid-
ering SIFT descriptor. It also outperforms the method pro-
posed in [2] where OM features encoding spatial informa-
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Fig. 4. Comparison of the different approaches on the of the PFID dataset [3].

Table 2. Accuracy of the different methods on the 7 Major Classes of the PFID dataset [3] (i.e., diagonal of the obtained confusion matrices).
Since the number of images belonging to the different classes are not balanced, for each class we report the per class accuracy percentage
together with the corresponding number of images (within parenthesis).

Images per class Sandwich Salad & Sides Bagel Donut Chicken Taco Bread & Pastry Average
On each test run 228 36 24 24 24 12 18 52.3

Per class accuracy % (Number of Images) Sandwich Salad & Sides Bagel Donut Chicken Taco Bread & Pastry Average
Color [3] 69.0 (157.3) 16.0 (5.8) 13.0 (3.1) 0.0 (0) 49.0 (11.8) 39.0 (4.7) 8.0 (1.4) 27.7 (26.3)

BoW SIFT [3] 75.0 (171) 45.0 (16.2) 15.0 (3.6) 18.0 (4.3) 36.0 (8.6) 24.0 (2.9) 3.0 (0.5) 30.9 (29.6)
GIR-STF [2, 8] 79.0 (180.1) 79.0 (28.4) 33.0 (7.9) 14.0 (3.4) 73.0 (17.5) 40.0 (4.8) 47.0 (8.5) 52.1 (35.8)

OM [2] 86.0 (196.1) 93.0 (33.5) 40.0 (9.6) 17.0 (4.1) 82.0 (19.7) 65.0 (7.8) 67.0 (12.1) 64.3 (40.4)
Class-Based Bag of Textons 87.6 (199.7) 84.3 (30.3) 70.8 (17) 43.1 (10.3) 66.7 (16) 69.4 (8.3) 53.7 (9.7) 67.9 (41.6)

tion are used after a semantic segmentation performed trough
STF [8]. It is important to note that, differently than [2], Tex-
tons based representation does not require any manual label-
ing of the different ingredients composing the food items to
be employed. Although the labeling of the different food in-
gredients is possible for a small set of plates, the up-scaling
to a huge number of categories (composed by many ingre-
dients) became not feasible, making the approach described
in [2] difficult to be applied. The experiments point out that
a proper encoding of textures play an important role for food
classification. Note that, even considering only a few Tex-
tons per class (i.e., 10 Textons for a total of 610 visual word
- see Table 1 and Fig. 4(a)) the accuracy obtained by the pro-
posed method on the 61 classes (27.9%) outperforms the ones
achieved by other methods and is very close to a more com-
plex food classification pipeline described in [2] (28.2%).The
proposed representation outperform all the others methods
with a number of class-based Textons Kc ≥ 30. In Table
2 are reported the accuracies of the different methods on the
7 major classes of the PFID dataset. Since the number of im-
ages belonging to the different classes are not balanced, for
a better understanding of the results, the number of images is
reported together with the per-class accuracy. Also in the case
of 7 major classes the average per-class accuracy is in favour
of the Textons based representation.

4. CONCLUSIONS AND FUTURE WORK

This paper evaluates the class-based Bag of Textons repre-
sentation in the context of food classification. The MRS4
filter banks are used to build class-based Textons vocabu-
laries. The image representation is coupled with a Support
Vector Machine for classification purpose. This representa-
tion is compared with respect to other state-of-the-art methods
on the public available Pittsburgh Fast-Food Image Dataset
(PFID). The class-based Bag of Textons representation ob-
tained better results with respect to all the other methods.
Future works could be devoted to the exploitation of Tex-
tons (and/or other types of texture-like feature, such as CLBP
[16]) in joint with other kind of features [17, 18], as well as
in encoding spatial information between local Textons (e.g.,
through correlograms of textons [19]) to better discriminate
food items. Moreover, could be important to test the Textons
based representation (both Global and Class-Based) on big-
ger food image datasets for both classification and retrieval
purposes.
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