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Abstract

Temporal video segmentation is useful to exploit and organize long egocentric

videos. Previous work has focused on general purpose methods designed to deal

with data acquired by different users. In contrast, egocentric video tends to be

very personal and meaningful for the specific user who acquires it. We propose a

method to segment egocentric video according to the personal locations visited

by the user. The method aims at providing a personalized output and allows

the user to specify which locations he wants to keep track of. To account

for negative locations (i.e., locations not specified by the user), we propose

a negative rejection method which does not require any negative sample at

training time. For the experiments, we collected a dataset of egocentric videos

in 10 different personal locations, plus various negative ones. Results show that

the method is accurate and compares favorably with the state of the art.

Keywords: Egocentric Vision, Lifelogging, Personal Locations, Temporal

Segmentation

1. Introduction

Wearable devices allow people to acquire a huge quantity of data about

their behavior and activities in an automatic and continuous fashion [1]. The
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practice of acquiring data of one’s own life for a variety of purposes is commonly

referred to as lifelogging. While the technology to acquire and store lifelog data5

coming from different sources is already available, the real potential of such data

depends on our ability to make sense of it. Wearable cameras, in particular, can

be used to easily acquire hours of egocentric videos concerning the activities we

perform, the people we meet, and the environments in which we spend our time.

As observed in [2], egocentric video is generally difficult to exploit due to the lack10

of explicit structure, e.g., in the form of scene cuts or video chapters. Moreover,

according to the considered goal, long egocentric videos tend to contain much

uninformative content like, for instance, transiting through a corridor, walking

outdoors or driving to the office. Consequently, automated tools to enable easy

access to the information contained in such videos are necessary.15

Toward this direction, researchers have already investigated methods to pro-

duce short informative video summaries from long egocentric videos [3, 4, 5],

recognize activities performed by the camera wearer [6, 7, 8, 9, 10, 11], tempo-

rally segment the video according to detected ego-motion patterns [2, 12], and

segment egocentric photo-streams [13, 14, 15]. Past literature aimed at investi-20

gating general-purpose methods, which are generally trained and tested on data

acquired by many users in order to ensure the generality of the algorithms. This

approach, however, risks to overlook the subjective nature of egocentric video,

which can be leveraged to provide tailored and user-specific services.

1.1. Personal Locations25

Towards the exploitation of user-specific information, in [16], we introduced

the concept of personal location as:

a fixed, distinguishable spatial environment in which the user can

perform one or more activities which may or may not be specific to

the considered location.30

Personal locations are defined at the instance level (e.g., my office, the lab),

rather than at the category level (e.g., an office, a lab) and hence they should
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not be confused with the general concept of visual scene [17]. Indeed, a given

set of personal locations could include different instances of the same scene

category (e.g., office vs lab office). Moreover, personal locations are user-specific35

since different users will be naturally interested in monitoring different personal

locations (e.g., each user will be interest in monitoring the activities performed

in his own office). Personal locations are constrained spaces (i.e., they are

not defined as a whole room but rather refer to a part of it, e.g., the “office

desk”), and hence they are naturally related to a restricted set of activities which40

can be performed in the considered locations [18]. For instance, the “office”

personal location is naturally associated with office-related activities such as

“writing e-mails” and “surfing the Internet”, while the “piano” personal location

is generally related just to “playing piano”. Hence, being able to recognize when

the user is located at a given personal location directly reveals information on a45

broad spectrum of activities which the user may be performing. The advantage

of recognizing personal locations, rather than activities directly, is that providing

supervision to recognize complex activities requires many samples (which is not

practical for user-specific applications), while providing supervision to recognize

personal locations is much more feasible, especially in egocentric settings [16].50

1.2. Temporal Segmentation of Egocentric Video

In this paper, we propose to segment egocentric videos into coherent seg-

ments related to personal locations specified by the user. We assume that the

user selects a number of personal locations he wants to monitor and provides la-

beled training samples for them. The process of acquiring training data should55

not burden the user and be as simple as possible. Therefore, we adopt the

acquisition protocol specified in [16, 19]. According to this protocol, the user

acquires training data for a specific location by turning on his wearable device

and looking around briefly to acquire a 30-seconds video of the environment.

At test time, the system analyzes the egocentric video acquired by the user60

and segments it into coherent shots related to the specified personal locations.

Given the large variability of visual content generally acquired by wearable
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devices, the user cannot easily provide an exhaustive set of personal locations

he will visit. Therefore, the system should be able to correctly identify and

reject all frames not related to any of the personal locations specified by the65

user. We will refer to these frames as “negatives” in the rest of the paper. In

our context, negatives arise from two main sources: 1) the user moving from

a personal location to another (transition negatives), and 2) the user spending

time in a location which is not of interest (negative locations). Examples of

transition negatives can be a corridor or an urban street, while examples of70

negatives locations might be a conference room, an office other than the user’s

office, another car, etc. Please note that, while negative samples need to be

correctly detected by the system, in real-world applications no negative training

data can be provided by the user. Therefore, we design our method to learn

solely from positive training data.75

Figure 1 shows a scheme of the proposed temporal segmentation system

and illustrates three possible applications for it, which are discussed in the

following. The output of the algorithm is a temporal segmentation of the input

video. Each segment is associated to a label which identifies the related personal

location or whether it is a negative segment (i.e., it is not related to any user-80

specified personal location). Such output can be used for different purposes.

The most straightforward objective consists in producing a video index to help

the user browse the video. This way, the user can easily jump to the part of the

video he is more interested in and discard negative segments which may not be

relevant. A second possible use of the output temporal segmentation consists85

in producing coherent video shots related to the personal locations specified

by the user (e.g., of egocentric videos acquired over different days). Given the

segmented shots and related meta-data (e.g., time stamps), the system could

answer questions such as “show me what I was doing this morning when I first

entered my office” or “tell me how many coffees I had today” (e.g., how many90

times I was at the Coffee Vending Machine personal location). Moreover, video

shots can be used as a basis for egocentric video summarization [4, 20]. A third

use of the segmented video consists in estimating the time spent by the user at
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Figure 1: Scheme of the proposed temporal segmentation method. The system can be used

to (a) produce a browsable temporally segmented egocentric video, (b) produce video shots

related to given personal locations, (c) estimate the amount of time spent at each location.

each location. In this case, the system would be able to answer questions such

as “how much time did I spend driving this week?” or “how much time did95

I spend in my office today?”. This kind of estimate does not require accurate

temporal segmentation but only overall correct per-frame predictions.

1.2.1. Contributions

This paper extends our previous work [21]. In particular, we present the

proposed method in greater details and analyzes the impact of each component100

and related parameters more thoroughly. We extend the experimental analysis

by defining a novel performance measure designed to evaluate segmentation

accuracy from a shot-retrieval point of view. New comparisons with many state
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of the art methods are also introduced. Finally, we publicly release the code

implementing the proposed method and evaluation measures.105

The main contributions of this paper can be summarized as follows: 1) It is

proposed to segment egocentric videos to highlight personal locations using min-

imal user-specified training data. To study the problem we collect and release

a dataset comprising more than 2 hours of labeled egocentric video covering 10

different locations plus various negatives. 2) A method to segment egocentric110

videos and reject negative samples is proposed. The method can be trained

using only the available positive samples. 3) A measure to evaluate the accu-

racy of temporal video segmentation methods is defined. The measure penalizes

methods which produce over-segmented or under-segmented results.

Experiments show that the proposed system can produce accurate segmen-115

tations of the input video with little supervision, outperforming baselines and

existing approaches. The code related to this study, as well as the proposed

dataset and a video of our demo, can be downloaded at

http://iplab.dmi.unict.it/PersonalLocationSegmentation/.

The remainder of the paper is organized as follows. Section 2 summarizes120

the related work. Section 3 presents the proposed method. Section 4 introduces

the involved dataset, defines the considered evaluation measures and reports

the experimental settings. Results are discussed in Section 5, whereas Section 6

concludes the paper.

2. Related Works125

Location Awareness. Our work is related to previous studies on context and

location awareness in wearable and mobile computing. According to Dey et

al. [22], context aware systems should be able to “use context to provide rele-

vant information and/or services to the user, where relevancy depends on the

user’s task”. Visual location awareness, in particular, has been investigated by130

different authors over the years. Starner et al. [23] addressed the recognition of

basic tasks and locations related to the Patrol game from egocentric videos in
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order to assist the user during the game. Aoki et al. [24] proposed to recognize

personal locations from egocentric video using the approaching trajectories ob-

served by the wearable camera. Torralba et al. [25] designed a context-based135

vision system for place and scene recognition. Farinella et al. [26, 27] engineered

efficient computational methods for scene recognition which can be easily de-

ployed to embedded devices. Rhinehart et al. [18] explored the relationship

between actions and locations to improve both localization and action predic-

tion. Furnari et al. [16] performed a benchmark of different wearable devices140

and image representations for personal location recognition.

Temporal Video Segmentation. Temporal video segmentation methods aim at

decomposing an input video into a set of meaningful segments which can be used

as basic elements for indexing [28]. The topic has been widely investigated in the

domain of movie and broadcast video [29, 30, 31, 32, 33]. In particular, Hanjalic145

et al. [29] proposed to consider a video as composed by scenes and shots. Shots

are elementary video units acquired without interruption by a single camera.

Scenes contain semantically coherent material and are generally composed by

different temporally contiguous shots. Most state of the art algorithms achieve

temporal segmentation by first detecting shots and then merging contiguous150

highly correlated shots to form scenes. Chasanis et al. [30] propose to cluster

shots according to their visual content and apply a sequence alignment algorithm

to obtain the final segmentation. Sidiropoulos et al. [31] jointly exploit low-level

and high-level audiovisual features within the Scene Transition Graph to obtain

temporal segmentation. Apostolidis and Mezaris [32] detect abrupt and gradual155

transitions in videos exploiting both local and global descriptors. Baraldi et

al. [33] consider the problem of segmenting broadcast videos into scenes using

hierarchical clustering.

It should be noted that the discussed classic temporal video segmentation

methods are not directly applicable in the egocentric domain. In particular, the160

notions of shot and scene are not clearly defined for egocentric videos, which are

generally acquired without interruption and by a single camera for the entire
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length of the video.

Motion-Based Egocentric Video Segmentation. The problem of segmenting ego-

centric video to introduce some kind of structure has already been investigated165

by researchers. Among the most prominent work is the one of Poleg et al. [2, 12],

who proposed to segment egocentric video according to motion-related long-term

activities such as “walking”, “standing” or “driving car” performed by the user.

Similarly, Lu and Grauman [4] proposed to segment egocentric video into the

three “static”, “moving the head” and “in transit” classes as a first step for170

egocentric video summarization. Alletto et al. [34] proposed to include features

based on accelerometer and gyroscope data to improve motion-based segmenta-

tion. Kitani et al. [35] presented an unsupervised method to segment egocentric

video according to sports-related actions performed by the user. Motion-based

features are also used by Su and Grauman [36] to detect engagement from ego-175

centric video, i.e, to identify the video segments in which the user is paying

more attention.

Visual-Content-Based Egocentric Video Segmentation. While the aforementioned

methods aim at segmenting egocentric video according to the perceived motion,

they usually discard information strictly related to the visual content. In this180

regard, Lin and Hauptmann [37] imposed time constraints on the K-Means clus-

tering algorithm to segment videos acquired using a wearable camera. Doherty

and Smeaton [13] proposed a method to segment lifelog images acquired by a

SensCam into events using color and edge features. Bolaños et al. [38] used

hierarchical Agglomerative Clustering to segment egocentric photo-streams into185

events. Talavera et al. [14] combined clustering with a concept drift technique

to improve segmentation results. Templeman et al [39], detected images of sen-

sitive spaces for privacy purposes combining GPS information and an image

classifier. Castro et al. [40] used Convolutional Neural Networks and Random

Decision Forests to segment photo-streams of egocentric images highlighting hu-190

man activities. Paci et al. [41] presented a wearable system for context change

detection based on an egocentric camera with ultra-low power consumption.
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Ortis et al. [42, 43] proposed an unsupervised system to automatically divide

egocentric videos into chapters with respect to the user’s context.

Past work focused on designing general-purpose methods which usually rely195

on data acquired by multiple users. In contrast, we consider a personalized

scenario in which the user himself provides the training data and sets up the

system. In such settings, it is not possible to rely on a big corpus of user-specific

supervised data, since it is not feasible to ask the user to collect and label it.

Moreover, differently from related works, we explicitly consider the problem of200

rejecting negative samples, i.e., recognizing locations the user is not interested

in, so to discard irrelevant information. Given the large variability of visual data

acquired by wearable cameras, it is not feasible to ask the user to collect and

label a large number of representative negative samples. Therefore, we design

our system to work without requiring any negative sample at training time.205

3. Proposed Method

The proposed method aims at segmenting an input egocentric video into

coherent segments. Each segment is related to one of the personal locations

specified by the user or, if none of them apply, to the negative class. After an

off-line training procedure (which relies only on positive samples provided by210

the user), at test time, the system processes the input egocentric video. For

each frame, the system should be able to 1) recognize the personal locations

specified by the user, 2) reject negative samples, i.e., frames not belonging to

any of the considered personal locations, and 3) group contiguous frames into

coherent video segments related to the specified personal locations. The method215

works in three steps, namely discrimination, negative rejection and sequential

modeling :

1. Discrimination. Each frame is classified as one of the positive locations.

No negative class is taken into account at this stage.

2. Negative Rejection. The system estimates the probability of each frame220

to be a negative by analyzing neighboring predictions. If predicted labels
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Figure 2: A scheme of the proposed temporal segmentation method. The method works in

three steps: 1) discrimination among positive locations and estimation of P (yi|Ii, yi 6= 0),

2) negative rejection, i.e., estimation of P (yi = 0|Ii) and derivation of P (yi|Ii), 3) sequential

modeling through a Hidden Markov Model and estimation of the final set of labels L∗ =

argmaxLP (L|V).

disagree, the sample is rejected by the system.

3. Sequential Modeling. Labels are predicted sequentially using a Hidden

Markov Model to take into account previous observations. This step allows

to obtain a more accurate segmentation where random label changes are225

discouraged.

Figure 2 shows a scheme of the proposed method. Each of the three steps

involved in the proposed method is detailed in the following sub-sections.

3.1. Notation

Let V = {I1, . . . , IN} be the input egocentric video, i.e., a sorted collection230

of N frames Ii. Let M be the number of personal locations specified by the user

and let {1, . . . ,M} be the set of class labels related to the personal locations.

The system should assign a label yi ∈ {0, . . . ,M} to each frame Ii, where

yi = 0 denotes the “negative class”. The final goal of the proposed system is to
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produce a set of video segments S = {si}1≤i≤P (P is the number of segments).235

Each segment si contains a set of contiguous frames and is denoted by the

following triplet si = {ssi , sei , sci}, where 1 ≤ ssi ≤ N is the index of the first

(starting) frame contained in the segment, 1 ≤ sei ≤ N is the index of the last

(ending) frame contained in the segment and sci ∈ {0, . . . ,M} is the class label

related to segment si. In practice, a given segment s = (h, k, c) contains all240

frames {Ih, Ih+1, . . . , Ik−1, Ik}. All labels related to the frames contained in the

segment will be equal to c, i.e., yl = c ∀l ∈ {h, . . . , k}. Moreover, the video

segments contained in S define a partition of the video V, i.e., each frame in V

belongs to exactly one segment in S.

3.2. Discrimination245

At training time, a multi-class classifier (e.g., a Convolutional Neural Net-

work) is trained on the positive data specified by the user to discriminate among

the M positive locations (i.e., to assign labels yi ∈ {1, . . . ,M}). The negative

class is not considered at this stage because negative data is not assumed to be

available for training purposes. Since negatives are not included in the training250

set, the multi-class classifier will not be suitable to estimate a posterior proba-

bility distribution over the M + 1 classes (i.e., positive locations + the negative

class), such as the following:

P (yi|Ii). (1)

Rather, the multi-class classifier will allow estimate a posterior probability over

the M positive classes, i.e.:255

P (yi|Ii, yi 6= 0), s.t.

M∑
j=1

P (yi = j|Ii, yi 6= 0) = 1. (2)

In order to recognize positive locations and reject negative ones, modeling the

probability distribution reported in Equation (1) is desirable. This can be done

by estimating the probability of frame Ii to be a negative P (yi = 0|Ii) and

combining it with the discrimination probability reported in Equation (2). The
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result is a posterior distribution over M + 1 classes comprising both positive260

locations and the negative class.

3.3. Negative Rejection

Given the continuous nature of egocentric videos (i.e., they are acquired by

a single camera without interruptions), transitions among different locations are

expected to be smooth. Therefore, it is reasonable to assume that K neighboring265

frames in an egocentric video will belong to the same positive personal location

or to some form of negative. This assumption can lead to imprecise results

whenever the user transits from a personal location to another. However, such

transitions are relatively rare in long egocentric videos and, for small enough

values of K, such assumption shall not affect much the overall performance of270

the system.

Let IKi = {Ii−bK2 c, . . . , Ii+bK2 c} be the neighborhood of size K of frame Ii

and let YKi = {yi−bK2 c, . . . , yi+bK2 c} be the corresponding set of labels predicted

with the Maximum A Posteriori (MAP) criterion, i.e., yi = arg maxj P (yi =

j|Ii, yi 6= 0) after the discrimination step. According to the assumption above, if275

frame Ii belongs to a positive location, the labels associated to its neighborhood

YKi are expected to “agree”, i.e., the distribution of labels in YKi should be

strongly peaked. When the frames contained in IKi are related to the negative

class (i.e., they represent something unseen during training), the multi-class

classifier will exhibit high uncertainty and it will likely pick a random label for280

each sample. In this case, the distribution of labels within YKi is expected to

be characterized by large uncertainty, i.e., it should not exhibit a strong peak.

Following [44], we measure the model uncertainty by computing the variation

ratio of the distribution of labels YKi . We hence define the probability of Ii to

be a negative sample as follows:285

P (yi = 0|Ii) = 1−

∑i+bK2 c
k=i−bK2 c

[yk = mode(YKi )]

|YKi |
(3)

where [·] denotes the Iverson bracket, yk ∈ YKi , mode(YKi ) is the statistical

mode of YKi and |YKi | corresponds to the cardinality of set YKi .
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Since the events yi = 0 (Ii is a negative) and yi 6= 0 (Ii is not a negative) are

disjoint, the probability reported in Equation (1) can be obtained combining

the probabilities reported in Equation (2) and Equation (3) as follows:290

P (yi|Ii) =

P (yi = 0|Ii) if yi = 0

P (yi 6= 0|Ii) · P (yi|Ii, yi 6= 0) otherwise

. (4)

The probability distribution reported in Equation (4) sums to one over the M+1

classes {0,. . . ,M} and can be used to jointly perform discrimination among the

positive locations and rejection of negatives simply using the argmax function:

yi = arg max
j
P (yi = j|Ii), j ∈ {0, . . . ,M}. (5)

3.4. Sequential Modeling

The assumption according to which neighboring predictions shall be coher-295

ent can be further exploited by employing a Hidden Markov Model (HMM).

Specifically, given the input video V = {I1, . . . , IN}, the globally optimal set of

labels L = {y1, . . . , yN} can be obtained maximizing the posterior probability:

P (L|V). (6)

According to Bayes’ rule, such probability can be expressed as follows:

P (L|V) ∝ P (V|L)P (L). (7)

Assuming conditional independence of the frames with respect to each other300

given their class (i.e., Ii ⊥⊥ Ij |yi, ∀i, j ∈ {1, 2, . . . , n}, i 6= j), and applying the

Markovian assumption on the conditional probability distribution of class labels

(P (yi|yi−1 . . . y1) = P (yi|yi−1)), Equation (7) is rewritten as:

P (L|V) ∝ P (y1)

n∏
i=2

P (yi|yi−1)

n∏
i=1

P (Ii|yi). (8)

Term P (y1) is assumed to be uniform over all possible classes (i.e., for y1 ∈

{0, . . . ,M}) and hence it can be ignored when Equation (7) is maximized with305

respect to V. Probability P (Ii|yi) is inverted using Bayes’ law, thus obtaining:

P (Ii|yi) ∝ P (yi|Ii)P (Ii). (9)
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Term P (Ii) can be ignored since Ii is observed when maximizing Equation (6)

with respect to V and term P (yi|Ii) is computed directly using Equation (4).

Equation (8) is finally written as follows:

P (L|V) ∝
n∏
i=2

P (yi|yi−1)

n∏
i=1

P (yi|Ii). (10)

The HMM state transition term P (yi|yi−1) represents the probability of tran-310

siting from a given location to another (including negatives). Transition prob-

abilities in Hidden Markov Models can be generally learned from data as done

in [25], or defined ad-hoc to express a prior belief as done in [39]. Since we

assume that few training data should be provided by the user and no labeled

sequences are available at training time, the HMM transition probability is de-315

fined ad-hoc to encode the prior belief that neighboring predictions are likely to

belong to the same class [39]:

P (yi|yi−1) =

ε, if yi 6= yi−1

1−Mε, otherwise

(11)

where ε ≤ 1
M+1 is a small constant. The transition probability defined in Equa-

tion (11) can be seen as an “almost identity” matrix, i.e., a matrix containing

values close to 1 on the main diagonal and positive values close to 0 anywhere320

else. This kind of transition matrix encourages coherence between subsequent

states and penalizes multiple random state changes.

The set of globally optimal labels L can be finally obtained maximizing the

probability reported in Equation (7), which can be achieved efficiently using the

Viterbi algorithm [45]:325

L = arg max
L

P (L|V). (12)

The final segmentation S is obtained by considering the connected components

of labels in L.
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(a) positive samples

(b) negative samples

Figure 3: Some sample frames from the proposed dataset.

4. Experimental Settings

4.1. Dataset

We collected a dataset of egocentric videos in ten different personal loca-330

tions, plus various negative ones. The considered personal locations arise from

a possible daily routine: Car, Coffee Vending Machine (CVM), Office, Lab Of-

fice (LO), Living Room (LR), Piano, Kitchen Top (KT), Sink, Studio, Garage.

The dataset has been acquired using a Looxcie LX2 camera equipped with a

wide angular converter. This configuration is the one which performed best in335

the benchmark dataset proposed in [16] and allows to acquire videos at a reso-

lution of 640× 480 pixels and with a Field Of View of approximately 100◦. The

use of a wide-angular device is justified by the ability to acquire a large amount

of scene information, albeit at the cost of radial distortion, which in some cases

requires dedicated computation [46, 47, 48]. Figure 3 shows some sample frames340

from the dataset.
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Sequence Context transitions Length

1 Car → N → Office → N → Lab Office 00:11:27

2 Office → N → Lab Office 00:05:55

3 Lab Office → N → Office → N → C.V.M. 00:07:24

4 TV → N → Piano → N → Sink 00:11:40

5 Kitchen T. → N → Sink → N → Piano 00:10:41

6 Kitchen T. → N → Sink → N → TV 00:11:18

7 Piano → N → Sink → N → TV 00:04:57

8 Studio → N → Car → N → Garage 00:06:51

9 Car → N → Garage → N → Studio 00:05:17

10 Car → N → Studio → N → Garage 00:06:05

Total length 01:21:35

Table 1: A summary of the location transitions contained in the test sequences. “N” represents

a negative segment (to be rejected by the final system).

Since we assume that the user is required to provide only minimal data to

define his personal locations of interest, the training set consists in 10 short

videos (one per location) with an average length of 10 seconds per video. The

test set consists in 10 video sequences covering the considered personal loca-345

tions of interest, negative frames and transitions among locations. Each frame

in the test sequences has been manually labeled as either one of the 10 personal

locations or as a negative. Table 1 summarizes the content of the test sequences

with an overview of the related transitions. It should be noted that test se-

quences contain both sources of negative samples discussed in Section 1.2, i.e.,350

transition negatives and negative locations.

The dataset is also provided with an independent validation set which can

be used to optimize the hyper-parameters of the compared methods. The vali-

dation set contains 10 medium length (approximately 5 to 10 minutes) videos in

which the user performs some activities in the considered locations (one video355

per location). Validation videos have been temporally sub-sampled in order to
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extract 200 frames per location, while all frames are considered in the case of

training and test videos. We also acquired 10 medium length videos containing

negative samples from which we uniformly extracted 300 frames for training and

200 frames for validation. Negative training and validation samples have been360

acquired in order to allow for comparisons with methods which require negative

samples at training time. Please note that the proposed method does not need

to learn from negatives and hence it discards them during training.

The proposed dataset contains 2142 positive plus 300 negative frames for

training, 2000 positive plus 200 negative frames for validation and 132234 mixed365

(both positive and negative) frames for testing purposes. The dataset is available

at our web page http://iplab.dmi.unict.it/PersonalLocationSegmentation/.

4.2. Evaluation Measures

As observed in [49], evaluation measures for temporal video segmentation

methods can be organized in three categories: boundary-level measures, shot-370

level measures and frame-level measures.

Boundary-level measures consider the segmentation problem as a shot bound-

ary detection task. According to these measures, a prediction is considered cor-

rect only if the boundaries of the detected shot match ground truth boundaries

exactly. This kind of similarity measures is not appropriate in our case since it is375

not clear how to define where shots/scenes begin and terminate in an egocentric

video.

Shot-level measures evaluate temporal segmentation methods according to

the overlap between predicted and ground truth segments. Among these, the

popular coverage/overflow measure proposed by Vendrig et al. [50] evaluates if380

shots are correctly detected and grouped into scenes. While an overlap-based

measure is needed to assess the accuracy of a produced segmentation, the cov-

erage/overflow measure cannot be used directly in our case since the definitions

of shots and scenes do not apply to egocentric videos.

Frame-level measures evaluate the fraction of frames which have been cor-385

rectly labeled regardless their organization into coherent shots. The main draw-
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back of such measure is that it does not explicitly penalize under-segmentation

(i.e., when one or more segments are not detected) and over-segmentation (i.e.,

the incorrect detection of many small segments within a longer video segment).

However, despite their simplicity, this class of measures allows to assess how390

well a method can count the number of frames belonging to a given class. This

can be useful, for example, to estimate the time spent at a given location over

a long period of time (e.g., for lifelogging applications).

Taking into account the above considerations, we define two different mea-

sures which consider the temporal segmentation problem as a retrieval task and395

evaluate the methods in terms of F1 score. Specifically, we consider a frame-

based F1 measure and a segment-based F1 measure. In both cases, F1 scores are

computed separately for each class. Mean F1 scores (averaged over all classes)

are also reported as an overall performance indicator for each method.

Frame-based F1 score. Given a specific class γ ∈ {0, . . . ,M}, precision and

recall values are computed in the standard way considering the number of frames

correctly predicted as belonging class γ. The class-specific frame-based F1 score

(denoted as FF
(γ)
1 ) is hence computed as the harmonic mean between precision

and recall :

FF
(γ)
1 = 2 · precision · recall

precision+ recall
. (13)

As an overall performance indicator, we also consider the mFF1 score, which is400

the mean of the FF
(γ)
1 scores related to all considered classes (γ ∈ {0, . . . ,M}).

Per-class FF
(γ)
1 scores (and related mFF1 values) are preferred over the stan-

dard accuracy measure (i.e., percentage of correctly classified frames) since they

allow to perform unbiased evaluations when test samples are not evenly dis-

tributed among classes.405

Segment-based F1 score. Let γ ∈ {0, . . . ,M} be the considered class, let Sγ =

{si s.t. sci = γ}i∈{1,...,P} be the set of the P predicted segments belonging to

class γ, and let Sγ = {si s.t. sci = γ}i∈{1,...,Q} be the set of the Q ground

truth segments belonging to class γ. In order to reason about correct and
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wrong predictions, each predicted segment si should be associated to exactly

one ground truth segment si. To compute such associations, we consider a

standard linear sum assignment problem (which is solved using the Hungarian

algorithm [28]) where the cost of assigning si to sj is equal to the Jaccard

distance between the two segments dJ(si, sj). The Jaccard distance dJ(si, sj)

is obtained subtracting the Jaccard coefficient from 1: dJ(si, sj) = 1−J(si, sj),

and the Jaccard coefficient J(si, sj) is computed as the ratio of the area of the

intersection between the segments to the area of their union:

J(si, sj) =
max(min(sei , s

e
j)−max(ssi , s

s
j) + 1, 0)

max(sei , s
e
j)−min(ssi , s

s
j) + 1

. (14)

The solution of the linear assignment is the assignment matrix X = [xij ], where

xij = 1 if si has been assigned to sj . In order to compute precision and recall

values, we consider a detected segment si as a correct prediction only if xij = 1

for some index j and the Jaccard index between the two segments exceeds a given

threshold: J(si, sj) ≥ t. This leads to the definition of threshold-dependent

precision and recall measures:

precision(γ)(t) =

∑
i,j xij · [J(si, sj) ≥ t]

|Sγ |
, recall(γ)(t) =

∑
i,j xij · [J(si, sj) ≥ t]

|Sγ |
.

(15)

The threshold-dependent, segment-based F1 measure is hence computed as fol-

lows:

SF
(γ)
1 (t) = 2 · precision

(γ)(t) · recall(γ)(t)
precision(γ)(t) + recall(γ)(t)

. (16)

The SF
(γ)
1 measure defined in Equation (16) can be used to plot threshold-SF1

curves in order to assess the performances of the method with respect to varying

tolerance levels. Given a set of thresholds T = {t s.t. 0 ≤ t ≤ 1}, the overall

performance of a segmentation method can be computed as the average SF1

score:

ASF
(γ)
1 =

∑
t∈T SF

(γ)
1 (t)

|T |
. (17)

To assess the overall method performance, we also consider the mASF1 score,

which is the average of ASF
(γ)
1 scores for all considered classes (γ ∈ {0, . . . ,M}).

19



A Python implementation of the proposed measure is included in the code

available at our web page:

http://iplab.dmi.unict.it/PersonalLocationSegmentation/.410

4.3. Settings

All experiments are performed on the dataset described in Section 4.1. The

multiclass classifier needed in the discrimination stage of our method is imple-

mented by fine-tuning on our training set the VGG16 Convolutional Neural Net-

work (CNN) pre-trained on the ImageNet dataset [51]. Given the small training415

set, the convolutional layers of the network are locked during the fine-tuning (i.e.,

their related learning rate is set to zero) to avoid overfitting. We set the neigh-

borhood size of our rejection method to K = 300 and the small constant in the

definition of the HMM transition probability (Equation (11)) to ε = 2.23·10−308,

which is the minimum positive normalized floating-point number in our machine.420

To compute SF1 measures, we set T = {0, 0.1, 0.2, . . . , 0.99, 1}. The influ-

ence of the considered parameters on the performance of the method and the

optimality of the selected values is discussed in Section 5.1. Compared methods

are trained on the whole training set and evaluated on the test sequences. The

validation set is used to tune the hyper-parameters of the methods and to select425

the best performing iteration in the case of CNNs.

5. Results

We perform experiments to 1) assess the influence of each of the components

involved in the proposed method and related parameters and 2) compare the

method with respect to the state of the art.430

5.1. Performance of The Proposed Method

Fine-tuning large CNNs using a small training set (≈ 200 samples per class

in our settings) is not trivial and some architectural parameters can be tuned in

order to optimize performance. We perform experiments to assess the impact

of the following architectural settings: 1) the dataset on which the network has435
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Parameters Discrimination Rejection Sequential Mod.

mFF1 mASF1 mFF1 mASF1 mFF1 mASF1

I 0.92 0.05 0.87 0.02 0.92 0.82

I L 0.94 0.05 0.87 0.02 0.95 0.89

I ND 0.91 0.06 0.87 0.02 0.92 0.81

I L ND 0.94 0.04 0.87 0.01 0.93 0.86

P 0.92 0.05 0.84 0.02 0.89 0.79

P L 0.94 0.03 0.87 0.02 0.92 0.85

P ND 0.91 0.02 0.83 0.01 0.91 0.80

P L ND 0.94 0.03 0.87 0.02 0.92 0.83

Table 2: Mean frame-based F1 scores (mFF1) and mean average segment-based F1 scores

(mASF1) for the different components involved in the proposed method (i.e., discrimination,

rejection and sequential modeling). Architectural settings: I : the CNN has been pre-trained

on the ImageNet dataset, P : the CNN has been pre-trained on the Places365 dataset, L :

convolutional layers are locked, ND : dropout is disabled.

been pre-trained (we consider ImageNet [52] and Places365 [53]), 2) whether

the convolutional layers are “locked” (i.e., their related learning rate is set to

zero) or not, 2) whether dropout in the fully connected layers is disabled or not.

Table 2 reports the performance (in terms of mFF1 and mASF1 scores) of

the proposed method on the test sequences. Each row in Table 2 reports results440

for a specific experiment. For each experiment, the Parameters column sum-

marizes the architectural settings used to fine-tune the CNN (see table caption

for a legend), the Discrimination column reports the performance of the CNN

alone (in this case negative samples are removed from the test set for the eval-

uation), the Rejection column reports the performance of the method including445

the proposed rejection mechanism but excluding the application of the HMM

(all frames from test sequences are included in the evaluation), the Sequential

Mod. column reports the final results of the proposed method including rejec-

tion and sequential modeling through the application of the HMM (all frames

from test sequences are included in the evaluation).450
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It is worth observing that, discrimination (second column) is easier to achieve

than rejection (third column) for all models. However, as discussed before, in

real applications, the system needs be able to reliably reject negative samples.

Interestingly, the gap between discrimination and rejection is in general suc-

cessfully recovered in the sequential modeling component. Moreover, it should455

be noted how the use of a Hidden Markov Model with a hand-designed transi-

tion matrix is very effective to achieve consistent segmentation results. This is

indicated by the poor mASF1 scores in the results related to both the discrim-

ination and rejection steps, while sequential modeling results are significantly

higher.460

The results reported in Table 2 highlight the importance of tuning the con-

sidered architectural settings to improve accuracy. In particular, best results

are systematically achieved when convolutional layers are locked. Disabling

dropout leads to equivalent or marginally worse discrimination results. Mod-

els pre-trained on the ImageNet dataset allow to obtain better results over the465

ones pre-trained on Places365, especially in terms of mASF1 score when the

final result of the Sequential modeling step is considered. While this finding

might seem surprising at first (the Places365 dataset contains data which is

closer to our applicative domain), many personal locations can be recognized

considering the presence of specific objects (e.g., the computer monitor) as it is470

shown in Figure 3. In sum, best results are obtained pre-training the CNN on

ImageNet and locking the convolutional layers (second row of Table 2). This

architectural configuration is the one used in all following experiments.

Figure 4 reports color-coded segmentation results of the proposed method

for qualitative assessment. The figure illustrates predictions issued by the475

three components of the proposed method (Discrimination, Rejection, Sequen-

tial Modeling). As can be noted from Figure 4, the discrimination component

tends to exhibit high uncertainty in the negative segments. At the discrim-

ination stage, this results in areas characterized random label changes. The

rejection component leverages the presence of such uncertain segments to de-480

tect negatives but still retains some of the original random label changes. The
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Figure 4: Color-coded segmentation results for qualitative assessment. The diagram illus-

trates predictions made by the three components of the proposed method, i.e., Discrimination

(Disc.), Rejection (Rej.) and Sequential Modeling (Seq.). Ground truth segmentation is also

reported for comparison. Please note that the diagram reports results for the concatenation

of all sequences in the test set.

application of a HMM in the sequential modeling stage allows to obtain a clean

segmentation which often matches the ground truth with high accuracy.

For further qualitative assessment, in Table 3 we report results related to the

task of estimating the total amount of time spent by the user at each location.485

Specifically, the table reports ground truth times as well as estimates performed

by the proposed method. Estimates are obtained by counting the number of

predicted frames related to each class. As can be observed from Table 3, esti-

mated times are very accurate for many classes (error is often in the order of

seconds).490

The reader is also referred to the demo video available at our web page:

http://iplab.dmi.unict.it/PersonalLocationSegmentation/.

5.1.1. Sensitivity with Respect to the Involved Parameters

We also study the sensitivity of the results with respect to the two involved

parameters, namely the size K of the neighborhood considered for negative495

rejection and the small constant ε used to define the HMM transition matrix.

Figure 5 reports the results of the proposed method on the test sequences for

varying values of the parameters K and ε. To assess sensitivity to parameter

K, in Figure 5(a), ε is set to the optimal value of ε = 2.23 · 10−308. Similarly,

in Figure 5(b), we set K = 300.500
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Time spent at location (MM:SS)

Class Ground Truth Estimated Difference

Car 04:53 06:03 +01:10

Coffee V. Machine 00:35 00:37 +00:02

Garage 04:29 04:26 -00:03

Kitchen Top 06:32 06:37 +00:05

Lab Office 07:58 07:43 -00:15

Office 03:48 03:03 -00:45

Piano 07:39 07:46 +00:05

Sink 11:40 11:37 -00:03

Studio 06:49 06:55 +00:06

Living Room 07:39 07:41 +00:02

Negative 11:20 10:54 -01:34

Table 3: Ground truth times spent at each specific location by the user, along with the times

estimated by the proposed system and the difference between the two values. All times are

related to the union of all sequences in the test set.

Parameter K should be chosen in order to incorporate enough observations

to perform rejection, while avoiding the noise due to excessively large neighbor-

hoods. As can be observed in Figure 5(a), best segmentation results (indicated

by a green star) are reached around K = 300 (approximatively 10 seconds). It

should be noted that the method is robust also to other values of K.505

Results reported in Figure 5(b) suggest that the HMM works best for very

small values of ε. In this case indeed, the transition matrix related to the

probability defined in (11) is an “almost identical” matrix, which allows to

strongly enforce temporal coherence among neighboring predictions.

As discussed in Section 4.3, we set K = 300 and ε = 2.23 · 10−308.510

5.2. Comparison With the State Of The Art

We compare our method with respect to the following baselines and state of

the art methods.
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Figure 5: Sensitivity of the proposed method with respect to the two involved parameters (a)

K (size of the neighborhood for negative rejection) and (b) ε (small constant in the HMM

transition matrix).

SIFT-Based Matching (SIFT). The first baseline tackles the location recogni-

tion problem through feature matching. The system is initialized extracting515

SIFT feature points from each training image and storing them for later use.

Given the current test frame, SIFT features are extracted and matched with all

images in the training set. To reduce the influence of outlier feature points, for

each considered image pair, we perform a geometric verification using the MSAC

algorithm based on an affine model [54]. Classification is hence performed select-520

ing the class of the training set image presenting the highest number of inliers.

In this case, the most straightforward way to perform rejection of negative sam-

ples consists in setting a threshold on the number of inliers: if an image is a

positive, it is expected to yield a good match with some example in the dataset,

otherwise only geometrically weak matches will be obtained. Since it is not clear525

how such a threshold should be arbitrarily set, we learn it from the data. To do

so, we first normalize the number of inliers by the number of features extracted

from the current frame. We then select the threshold which best separates the

validation set from the training negatives. To speed up computation, input im-

ages are rescaled in order to have a standard height of 256 pixels, keeping the530

original aspect ratio (a pre-processing similar to the one required by most CNN
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models).

Open Set Deep Networks (OSDN). This method is based on the Open Set Deep

Networks recently proposed in [55]. We apply the OpenMax algorithm described

in [55] to the same CNN used by the proposed method in order to obtain a model535

able to perform both classification and rejection of negative samples. Similarly

to the proposed method, this method does not require any negative sample at

training time. A HMM is applied to the output of the network to allow for fair

comparisons.

Cascade SVM Classifier (CSVM). The method proposed in [19] performs neg-540

ative rejection and personal location recognition using a cascade of a One-Class

and a multiclass SVM classifier. The classifiers are trained on features ex-

tracted using the VGG16 network pre-trained on ImageNet. Please note that

this method uses training negatives to optimize the hyper-parameters of the

One-Class SVM classifier. Also in this case, a HMM is used to enforce temporal545

coherence.

Entropy-Based Rejection (EBR). This is the method recently proposed in [16],

which performs rejection of negative samples by measuring the entropy of the

posterior probability over small sequences of neighboring frames. The rejection

method is applied to the output of the same CNN used by the proposed method.550

A HMM is used to obtain the final segmentation.

Negative-Trained Network (NTN). This baseline employs a CNN trained to

discriminate directly between locations of interest and negative samples. The

network can be used directly to estimate posterior probabilities over 11 classes.

In contrast with all other compared methods, this baseline explicitly learns from555

negative samples. The CNN has been fine-tuned following the same architectural

settings adopted by our method (i.e., network pre-trained on ImageNet and

locked convolutional layers). A HMM is applied to the output of the network

to obtain the final segmentation.
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Method mFF1 Car CVM Garage KT LO Office Piano Sink Studio LR N

SIFT 0.27 0.03 0.08 0.00 0.83 0.04 0.13 0.81 0.10 0.14 0.47 0.33

OSDN [55] 0.60 0.41 0.93 0.81 0.00 0.52 0.08 1.00 0.60 1.00 0.83 0.42

CSVM [19] 0.79 0.41 0.87 0.80 0.94 0.97 0.84 0.84 0.90 0.80 0.94 0.32

EBR [16] 0.86 0.74 0.93 0.95 0.92 0.62 0.76 0.99 0.97 0.99 0.99 0.57

NTN 0.92 0.94 0.79 0.99 0.99 0.74 0.91 0.99 0.98 0.93 0.99 0.70

Proposed 0.95 0.89 0.97 0.98 0.99 0.98 0.85 0.99 0.97 0.99 0.99 0.83

Table 4: Per-class FF1 scores and related mFF1 measures for all compared methods.

Method mASF1 Car CVM Garage KT LO Office Piano Sink Studio LR N

SIFT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

OSDN [55] 0.47 0.40 0.87 0.54 0.00 0.32 0.08 0.99 0.16 0.99 0.66 0.17

CSVM [19] 0.49 0.19 0.35 0.44 0.65 0.95 0.57 0.43 0.51 0.48 0.67 0.13

EBR [16] 0.58 0.36 0.86 0.62 0.54 0.07 0.30 0.84 0.68 0.98 0.97 0.22

NTN 0.84 0.91 0.93 0.98 0.99 0.49 0.79 0.99 0.89 0.83 0.98 0.49

Proposed 0.89 0.87 0.94 0.96 0.99 0.96 0.76 0.98 0.83 0.98 0.98 0.54

Table 5: Per-class ASF1 scores and related mASF1 measures for all compared methods.

Table 4 and 5 report the results of the compared methods in terms of FF1560

and ASF1 scores respectively. For each method, we report detailed per-class

scores (including the negative class), as well as the overall mFF1 and mASF1

scores. Methods are sorted in terms of ascending mFF1 and mASF1 scores

and best per-column scores are highlighted in bold. In Figure 6 we also report

the Threshold-SF1 curves related to the compared methods. Finally, Figure 7565

reports color-coded segmentation results of all compared methods for qualitative

assessment.

The proposed method achieves the best performance in terms of overall

mFF1 and mASF1 scores, as well as in terms of many per-class FF1 and ASF1

scores. In particular, the proposed method scores the best results when it comes570

to rejecting negative samples in terms of both FF1 and ASF1 scores. As it is

shown in Figure 6, the proposed method is the most accurate for all considered

levels of segmentation matching tolerance (i.e., for different thresholds t). More-

over, the segmentation produced by the proposed method is the most accurate
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Figure 6: Threshold-SF1 curves comparing the proposed method with respect to the state of

the art. Reported curves are averaged over all classes.
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Figure 7: Color-coded segmentation results for qualitative assessment. The diagram compares

the proposed method with respect to temporal video segmentation approaches.
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among the others, as it is shown in Figure 7. The baseline based on matching575

SIFT features achieves the worst performance in terms of both FF1 and ASF1

scores. Decent FF1 results are reached only for some distinctive scenes like for

instance Kitchen Top and Piano. The method achieves very low ASF1 results

since it tends to over-segment the video as it is shown in Figure 7. Open Set

Deep Networks (OSDN) [55] achieves very good results for the Piano and Studio580

classes but is unable to manage other classes (e.g., Kitchen Top and Office and

Car) in terms of both the considered scores. In particular, the method tends

to reject more samples than it should, as it is shown in Figure 7. The method

based on a cascade of SVM classifiers (CSVM) [19] achieves better performance

but falls short in negative sample rejection. In particular, as shown in Figure 7,585

the methods omits many of the rejections and exhibits some false rejections.

The Entropy-Based (EB) method [16] improves negative rejection by a good

margin but it is not always accurate in terms of mASF1 scores, since it tends to

over-segment the video (see Figure 7). The proposed method also outperforms

the NTN baseline, which is designed to learn explicitly from negative samples.590

It should be noted that user-specific training negatives are hard to acquire and

hence might not be available, which makes our method (which does not rely on

any negative samples at training time) preferable in real applications.

5.2.1. Comparison With Temporal Video Segmentation Methods

As discussed in Section 2, our method is related to previous work on temporal595

video segmentation. Nevertheless, a direct comparison with those methods is

not straightforward since they have been designed to produce a different output.

Specifically, while our method produces a set of segments si characterized by a

starting index ssi , an ending index sei and a class label sci , classic temporal video

segmentation methods are designed to break the input video into shots which are600

not associated to any specific class labels. We perform experiments to investigate

whether the output of such algorithms can be used to improve personal-location-

based segmentation of egocentric videos. To this aim, we designed a simple

baseline which combines a classic temporal segmentation method with a personal
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Method mASF1 Car CVM Garage KT LO Office Piano Sink Studio LR N

Apostolidis et al. [32] 0.71 0.87 0.63 0.77 0.85 0.75 0.76 0.70 0.58 0.81 0.71 0.39

Poleg et al. [2] 0.84 0.87 0.84 0.92 0.95 0.86 0.67 0.97 0.82 0.95 0.97 0.42

Baraldi et al. [49] 0.86 0.85 0.87 0.97 0.98 0.78 0.76 0.98 0.83 0.98 0.98 0.50

Ortis et al. [43] 0.87 0.88 0.76 0.95 0.99 0.97 0.76 0.97 0.81 0.99 0.98 0.51

Proposed 0.89 0.87 0.94 0.96 0.99 0.96 0.76 0.98 0.83 0.98 0.98 0.54

Table 6: Per-class ASF1 scores and related mASF1 measures for experiments comparing the

proposed method to baselines building on different temporal video segmentation approaches.

location classifier C capable of assigning to each frame a label corresponding to605

one of the M + 1 personal locations (including negatives).

The baseline works as follows. Let S ′ = {si}1≤i≤P be the set of video

shots produced by the considered video temporal segmentation method. Each

segment si is characterized by a starting index ssi and by an ending index sei .

The baseline assigns class labels sci to shots si by performing majority voting610

on the labels Y ′ = {yssi , . . . , ysei } predicted by the considered classifier C, i.e.,

sci = mode(Y ′). Adjacent shots belonging to the same class are merged into

a single video segment. Intuitively, if boundaries of the detected shots match

the ones of ground truth segments, the baseline should help to remove some

over-segmentation errors and improving overall segmentation accuracy.615

We implement the proposed baseline considering four different temporal seg-

mentation methods. Two of them have been explicitly designed to temporally

segment egocentric videos. Specifically, the method by Poleg et al. [2] segments

egocentric video detecting long term activities (e.g., walking, standing, running,

etc.) according to the exhibited egocentric motion, while the method by Orits620

et al. [43] relies on visual content represented through CNN features to segment

egocentric video into coherent scenes. The last two methods have been respec-

tively proposed by Apostolidis et al. [32] and Baraldi et al. [33] and represent

the state of the art in temporal segmentation of movies and broadcast video.

Since the proposed method is the best performing one among all competitors,625

we employ it as the classifier C required by the proposed baselines.

Table 6, Figure 8 and Figure 9 compare the proposed method with the

baselines related to the four considered segmentation methods. Results suggest
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Figure 8: Threshold-SF1 curves comparing the proposed method with respect to baselines

building on different temporal video segmentation approaches. Reported curves are averaged

over all classes.

that the proposed method already allows to achieve accurate segmentations and

hence it does not benefit from fusion with other temporal segmentation methods.630

Specifically, as it is shown in Table 6, while the baselines obtain marginally

better results for a few classes, they do not improve over the proposed method

in terms of overall mASF1 score. In fact, temporal segmentations obtained

using the baselines are in general less precise than the ones obtained using the

proposed method. This can be observed quantitatively in Figure 8, where the635

proposed method dominates the others for high thresholds (i.e., when a more

accurate segmentation is required) and qualitatively in Figure 9.

6. Conclusion

We have proposed a method to segment egocentric video into coherent seg-

ments related to personal locations specified by the user. The method works640

in supervised settings and requires minimal user-provided training data. Dif-

ferently from previous works, our method explicitly considers the problem of

rejecting negative locations and does not require any negative sample at train-

ing time. Moreover, we show how a simple Hidden Markov Model can be used
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Figure 9: Color-coded segmentation results for qualitative assessment. The diagram com-

pares the proposed method with respect to baselines building on different temporal video

segmentation approaches.

to obtain consistent temporal segmentation. The output of our algorithm can645

be used for a number of applications related to life-logging, such as, egocentric

video indexing, detection of semantically relevant video shots for later retrieval

or summarization, and estimation of the amount of time spent at each specific

location. The experimental analysis have highlighted that the proposed method

is accurate and compares favorably with respect to the state of the art.650

Given the unavailability of larger publicly available datasets, the proposed

experimental analysis has been carried out on a limited set of data. Future work

will be devoted to the extension of the analysis to a larger dataset, acquired by

multiple users, and to further reducing the extent of required user-intervention

by improving negative rejection methods.655
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