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Abstract. With the increasing availability of wearable cameras, the ac-
quisition of egocentric videos is becoming common in many scenarios.
However, the absence of explicit structure in such videos (e.g., video
chapters) makes their exploitation difficult. We propose to segment un-
structured egocentric videos to highlight the presence of personal loca-
tions of interest specified by the end-user. Given the large variability
of the visual content acquired by such devices, it is necessary to design
explicit rejection mechanisms able to detect negatives (i.e., frames not
related to any considered location) learning only from positive ones at
training time. To challenge the problem, we collected a dataset of ego-
centric videos containing 10 personal locations of interest. We propose a
method to segment egocentric videos performing discrimination among
the personal locations of interest, rejection of negative frames, and en-
forcing temporal coherence between neighboring predictions.

Keywords: first person vision, egocentric video, context-based analysis,
aware computing, video segmentation

1 Introduction and Motivation

Wearable cameras have recently become popular in many application scenarios
including law enforcement [34], assistive technologies [19], life-logging [16] and
social cameras [23]. Despite the large amount of information that such systems
can potentially acquire, the exploitation of egocentric videos is quite difficult due
to the lack of explicit structure, e.g., in the form of scene cuts or video chapters.
Depending on the considered goal, long egocentric videos tend to contain much
uninformative content like, for instance, transiting through a corridor, walking,
or driving to the office. Therefore, as pointed out in [24], automated tools are
needed to enable faster access to the information stored in such videos and
index their visual content. Towards this direction, researches have investigated
methods to produce short informative video summaries from long egocentric
videos [1, 21, 35], recognize the actions performed by the wearer [18, 10, 26, 20,
27], and segment the videos according to detected ego-motion patterns [24, 25].
While current literature focuses on providing general-purpose methods which
are usually optimized using data acquired by many users, we argue that, given
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Fig. 1. Overall schema of the proposed temporal segmentation of an egocentric video.

the subjective nature of egocentric videos, more attention should be devoted to
user-specific methods.

In this paper, we propose to segment unstructured egocentric videos into
coherent shots related to user-specified personal locations of interest. Our notion
of personal location builds on the one introduced in [12]: a fixed, distinguishable
spatial environment in which the user can perform one or more activities which
may or may not be specific to the considered location. According to this notion,
a personal location is specified at the instance level (e.g., my kitchen, my office,
my car), rather than at the category level (e.g., a kitchen, an office, a car). It
should be noted that personal locations are very specific to the user defining them
and should not be confused with the general concept of visual scene. Indeed, a
given set of personal locations could include different instances corresponding
to the same scene category (e.g., office vs lab office). Under such conditions,
classical scene-tuned image descriptor such as GIST [22] would perform poorly
as shown in [12]. Fig. 1 shows a schema of the investigated problem. The user
defines a number of locations of interest by providing minimal training data
in the form of short videos (e.g., a 10 seconds video per location). The user
is just asked to wear his camera and briefly look around while he is in the
considered location. Therefore, each training video is deemed to contain the
most common views of the considered location. Given the input egocentric video
and the user-defined set of locations, the task is to establish for each frame
in the video if it is related to either one of the considered personal locations
or none of them (i.e., it is a negative sample). We want to emphasize that in
a real-world scenario in which the system is set up by the end user himself,
training must be simple and achievable with few training data. Moreover, given
the large variability exhibited by egocentric videos, it is unfeasible to ask the
user to acquire a significant quantity of negative samples [12]. Therefore, we
assume that only positive samples of different locations are provided by the
user and propose a method to detect negative samples automatically, without
training on them. We would like to note that avoiding to learn from negative
frames is not limiting from a performance stand point. In fact, as we show in



Highlighting Personal Location of Interest in Egocentric Video 3

the experiments, even when negative samples are available for learning purposes,
training a multi-class classifier to correctly detect them is not trivial.

The proposed method uses a Convolutional Neural Network (CNN) to dis-
criminate among different locations and a Hidden Markov Model (HMM) to
enforce temporal coherence among neighbouring predictions. Differently from
previous works, we treat the rejection of negative samples explicitly and intro-
duces a non-parametric method to reject negative frames. Being non-parametric,
our method does not need any negative samples at training time. We discuss the
computational performances of the proposed method and also suggest a simpli-
fied system which is efficient enough to run in real-time. This allows possible
uses in real-time, assistive-related applications. The main contributions of this
paper are summarized in the following: 1) we study the problem of segment-
ing egocentric videos using minimal user-provided data and propose a dataset
comprising more than 2 hours of labelled egocentric videos covering 10 different
locations plus various negative environments, 2) we propose a method for ego-
centric video segmentation and negative sample rejection which trains only on
the available positive samples, 3) we show how CNNs can be exploited in this
domain (where training data is assumed to be scarce) experimenting a series
of simple architectural tweaks to avoid over-fitting during fine-tuning and opti-
mize computational performances. Experiments show that the proposed system
outperforms baselines and existing approaches by a good margin and with an
accuracy of over the 90% on the challenging sequences included in the proposed
benchmark dataset.

The remainder of the paper is organized as follows. Section 2 summarizes the
related work. Section 3 describes the dataset. Section 4 presents the proposed
system. Section 5 reports the experiments and discusses the results. Finally,
Section 6 concludes the paper.

2 Related Work

Researchers have explored the issues and opportunities related to first person
vision ever since the 90s. Relevant endeavors have focused on investigating con-
textual awareness and localization [29, 3, 33], improving human-machine inter-
action [30, 2], understanding and recognizing human activities [10, 11, 5, 8], in-
dexing and summarizing egocentric videos [24, 21, 25]. In particular, our work
is related to previous studies on contextual awareness in wearable and mobile
computing. In [9], efficient computational methods for scene categorization are
proposed for embedded devices. In [29], some basic tasks and locations related to
the Patrol game are recognized from egocentric videos in order to assist the user
during the game. In [3], personal locations are recognized from egocentric video
based on the approaching trajectories observed from the camera point of view.
In [33], a context-based vision system for place and scene recognition is pro-
posed and deployed on a wearable system. In [31], still images of sensitive spaces
are detected for privacy purposes combining GPS information and an image
classifier. In [5], Convolutional Neural Networks and Random Decision Forests
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Fig. 2. Some sample frames from the proposed dataset.

are exploited to recognize human activities from egocentric images. In [12], a
benchmark of different wearable devices and image representation techniques
for personal context recognition is proposed.

While current literature focuses primarily on providing general-purpose meth-
ods which can rely on data acquired by multiple user, we focus on a personal-
ized scenario in which the user himself provides the training data and sets up
the system. Under such conditions, it is not possible to rely on a big corpus of
supervised data, since it is not feasible to ask the user to collect and label it.
Moreover, differently from related works, we explicitly consider the problem of
rejecting negative samples, i.e., recognizing locations the user is not interested
in, so to discard irrelevant information.

3 Proposed Dataset

We collected a dataset of egocentric videos related to ten different personal loca-
tions, plus various negative ones. The considered locations arise from a possible
daily routine: Car, Coffee Vending Machine (C.V.M.), Office, Lab Office (L.O.),
Living Room (L.R.), Piano, Kitchen Top (K.T.), Sink, Studio, Garage. The
dataset has been acquired using a hardware configuration similar to the best
performing in the benchmark proposed in [12]: a Looxcie LX2 camera equipped
with a wide angular converter. Such configuration allows to acquire videos at a
resolution of 640× 480 pixels and with a Field Of View of approximately 100◦.
The use of a wide-angular device is justified by the ability to acquire a large
amount of information on the scene, albeit at the cost of radial distortion, which
in some cases requires dedicated computation [14, 13]. Fig. 2 shows some exam-
ple frames from the dataset. The dataset exhibits a high degree of intra-class
variability (e.g., Car and Garage classes) and small inter-class variability in some
cases (e.g., Office, Lab Office and Studio classes).
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Sequence Context transitions Length

1 Car → N → Office → N → Lab Office 00:11:27
2 Office → N → Lab Office 00:05:55
3 Lab Office → N → Office → N → C.V.M. 00:07:24
4 TV → N → Piano → N → Sink 00:11:40
5 Kitchen → N → Sink → N → Piano 00:10:41
6 Kitchen → N → Sink → N → TV 00:11:18
7 Piano → N → Sink → N → TV 00:04:57
8 Studio → N → Car → N → Garage 00:06:51
9 Car → N → Garage → N → Studio 00:05:17
10 Car → N → Studio → N → Garage 00:06:05

Total length 01:21:35

Table 1. A summary of the location transitions contained in the test sequences. “N”
represents a negative segment (to be rejected by the final system).

As discussed in the introduction, we assume that the user is required to pro-
vide only minimal data to define his personal locations of interest. Therefore, the
training set consists in 10 short videos (one per each location) with an average
length of 10 seconds per video. The test set consists in 10 video sequences cover-
ing the considered personal locations of interest, negative frames and transitions
among locations. Each frame in the test sequences has been manually labeled as
either one of the 10 locations of interest or as a negative. Table 1 summarizes
the content of the test sequences with the related transitions. The dataset is also
provided with an independent validation set which can be used to optimize the
hyper-parameters. The validation set contains 10 medium length (approximately
5 to 10 minutes) videos of activities performed in the considered locations (one
video per location). Validation videos have been temporally subsampled in or-
der to extract exactly 200 frames per location, while all frames are considered
for training and test videos. We have also acquired 10 medium length videos
containing negative samples from which we uniformly extract 300 frames for
training and 200 frames for validation. Negative samples are provided in order
to allow comparisons with methods which explicitly learn from negatives. Please
note that the proposed method does not need to learn from negatives and hence
it discards them at training time.

The proposed dataset contains 2142 positive, plus 300 negative frames for
training, 2000 positive, plus 200 negative frames for validation and 132234 mixed
(both positive and negative) frames for testing purposes. The dataset is available
at the web page http://iplab.dmi.unict.it/PersonalContexts/.

4 Proposed Method

Given an egocentric video as an ordered collection of image frames V = {I1, . . . , In},
our system must be able to 1) correctly classify each frame Ii as one of the
considered locations, 2) reject negative frames, 3) segment temporally coherent
sub-sequences related to the locations of interest. The system eventually returns
the segmentation S = {C1, . . . , Cn}, where Ci ∈ {0, . . . ,M − 1} is the class
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label associated to frame Ii (Ci = 0 representing the negative class label) and
M is the total number of classes including negatives (M = 11 in our case -
10 locations, plus the negative class). Rejection of negative samples is usually
tackled increasing the number of classes by one and explicitly learning to rec-
ognize negative samples. However, this procedure requires a number of training
negative samples which may not be easily acquirable by the user in a real-world
scenario. Indeed, given the large variability of visual content acquired by wear-
able devices, it would be infeasible to ask the user to acquire a sufficient number
of representative negative samples. Therefore, we propose to treat negative re-
jection separately from classification and introduce a non-parametric rejection
mechanism which does not need negative samples at training time.

We first consider a multi-class component which is trained solely on positive
samples to discriminate among the considered positive M − 1 classes. Since
the multi-class model ignores the presence of negative frames, it only allows to
estimate the posterior probability:

p(Ci|Ii, Ci 6= 0). (1)

We propose to quantify the probability p(Ci = 0|Ii) of a given frame Ii to be
negative as the uncertainty of the multi-class model in predicting the class labels
related to last k frames (in our experiments we use k = 30, which is equivalent
to one second at 30 fps). Specifically, considering that both the visual content
and class label are deemed to change slowly in egocentric videos, we assume that
the past k frames Iki = {Ii, Ii−1, . . . , Imax(i−k+1,1)} are related to the same class.

Such assumption may be imprecise when Iki contains the boundary between two
different locations. However, such cases are rather rare and if k spans over one
second or less, the assumption only affects the boundary localization accuracy
and is not expected to have a huge impact on the overall accuracy. Since the
multi-class model has been tuned only on positive samples, we expect it to
exhibit low uncertainty when the frames in Iki belong to one of the positive
classes, while we expect a large uncertainty in the case of negative samples.
Similarly to [15], we measure model uncertainty computing the variation ratio
of the distribution of labels Yk

i = {yi, . . . , ymax(i−k+1,1)} predicted within Iki by
maximizing the posterior probability in Eq. (1): yi = arg maxj p(Ci = j|Ii, Ci 6=
0), j = 1, . . . ,M − 1. We finally assign the probability of Ii being a negative
sample as follows:

p(Ci = 0|Ii) = 1−
∑

j 1(yj = Ỹk
i )

#{Yk
i }

(2)

where 1(·) denotes the indicator function and Ỹk
i represents the mode of Yk

i .
It should be noted that the definition reported in Eq. (2) is totally arbitrary
and encodes the belief that the model should agree on similar inputs if they are
positive samples. In practice, given a number of predictions computed within a
small temporal window, we quantify the probability of having a negative sample
as the fraction of labels disagreeing with the mode.

Considering that Ci = 0 and Ci 6= 0 are disjoint events (and hence p(Ci 6=
0|Ii) = 1 − p(Ci = 0|Ii)), the probabilities reported in Eq. (1) and (2) can be



Highlighting Personal Location of Interest in Egocentric Video 7

combined as follows:

p(Ci|Ii) =

{
p(Ci = 0|Ii) if Ci = 0

p(Ci 6= 0|Ii) · p(Ci|Ii, Ci 6= 0) otherwise
. (3)

The final class prediction for frame Ii (including the rejection of negative sam-
ples) can be obtained maximizing Eq (3) as follows:

C∗i = arg max
j

p(Ci = j|Ii) (4)

Given the nature of egocentric videos, subsequent frames will be likely re-
lated to the same location, while a sudden change of location is a rare event.
Such a prior can be taken into account during the computation of the final seg-
mentation using a Hidden Markov Model (HMM). We consider the probability
p(S|V) which, according to the Bayes’ rule, can be expressed as follows:

p(S|V) ∝ p(V|S)p(S). (5)

Assuming conditional independence of the frames with respect to each other
given their classes (Ii ⊥⊥ Ij |Ci, ∀i, j ∈ {1, 2, . . . , n}, i 6= j), and applying the
Markovian assumption on the conditional probability distribution of the class
labels (p(Ci|Ci−1 . . . C1) = p(Ci|Ci−1)), Eq. (5) can be written as:

p(S|V) ∝ p(C1)

n∏
i=2

p(Ci|Ci−1)

n∏
i=1

p(Ii|Ci). (6)

Probability p(C1) is assumed to be constant over the different classes and can
be ignored when maximizing Eq. (6). Probability p(Ii|Ci) can be inverted using
the Bayes law p(Ii|Ci) ∝ p(Ci|Ii)p(Ii). Since Ii is observed, term p(Ii) can be
ignored, while p(Ci|Ii) is estimated using Eq. (3). Eq. (6) can be hence written
as:

p(S|V) ∝
n∏

i=2

p(Ci|Ci−1)

n∏
i=1

p(Ci|Ii). (7)

The term p(Ci|Ci−1) is the HMM state transition probability. Transition prob-
abilities in Hidden Markov Models can generally be learned from the data as
done in [33], or defined ad hoc to express a prior belief as done in [31]. Since we
assume that few training data should be provided by the user and no labeled se-
quences are available at training time, we define an ad-hoc transition probability
as suggested by [31]:

p(Ci|Ci−1) =

{
ε, if Ci 6= Ci−1

1− (M − 1)ε, otherwise
(8)

where ε is a small constant (we use the machine accuracy in double precision
2.22 × 10−16 in our experiments). The state transition probability defined in
Eq. (8) enforces coherence between subsequent states and penalizes random state
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changes. The final segmentation of the input egocentric video is obtained choos-
ing the one which maximizes the probability in Eq. (7) by using the Viterbi
algorithm [4]:

S∗ = arg max
S

p(S|V). (9)

5 Experimental Settings and Results

Experiments are performed on the dataset described in Section 3. All compared
methods are trained on the whole training set and evaluated on the test se-
quences. The validation set is used to tune hyper-parameters and select the
best performing iteration in the case of CNNs. In Section 5.1, we study the
performances of the proposed method, paying particular attention to optimiza-
tion. Specifically, we evaluate different architectural tweaks which help reduc-
ing over-fitting when fine-tuning Convolutional Neural Networks on our small
realistic dataset (≈ 200 samples per class) and reduce computational require-
ments. Moreover, we discuss the influence of the different components included
in our method (i.e., multiclass classifier, rejection mechanism, and HMM). In
Section 5.2 we compare our method with respect to the state of the art.

5.1 Proposed Method: Optimization and Performances Evaluation

The multi-class classifier employed in the proposed method could be imple-
mented using any algorithm able to output posterior probabilities in the form
of Eq. (1). We consider Convolutional Neural Networks given their compactness
and the superior performances shown on many tasks including personal location
recognition [12]. In particular, following [12], we fine-tune the VGG-S network
proposed in [7] on our training set. Since the VGG network has been trained on
the ImageNet dataset, we expect the learned features to be related to objects
and hence relevant to the task of location recognition, as highlighted in [36].

Optimization of the Multi-Class Classifier Fine-tuning a large CNN using
a small training set (≈ 200 samples per class) is not trivial and some architectural
details can be tuned in order to optimize performances. Specifically, we assess
the impact of the following architectural settings: 1) locking the convolutional
layers (i.e., setting their relative learning rate to zero), 2) disabling dropout in
the fully connected layers, 3) reducing the number of units in the fully connected
layers from 4096 to 128, 4) removing the fully connected layers and attaching a
logistic regression (softmax) layer directly to the last convolutional layer. In the
following, we discuss different combinations of the aforementioned architectural
settings in order to assess the influence of each considered setting. Results for
these experiments are reported in Table 2 and Table 3.

Table 2 is organized as follows. Each row of the table is related to a different
experiment. The first column (Id) reports unique identifiers for the considered
methods. The second column (Settings) summarizes the architectural settings
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Accuracy Computational Performances
Id Settings Discrim. +Rejection +HMM Dimensions Time
[a] 76.90 69.60 73.83 378 MB 13.23 ms
[b] L 83.30 76.06 83.22 378 MB 13.13 ms
[c] L ND 94.53 85.00 88.63 378 MB 13.10 ms
[d] L 128 83.07 77.49 82.84 34 MB 10.32 ms
[e] L ND 128 77.09 71.99 73.59 34 MB 10.28 ms
[f ] L LR 92.31 81.00 85.37 26 MB 10.23 ms

Table 2. Optimization of the multi-class classifier. Architectural settings: L the
convolutional layers are locked, ND dropout is disabled, 128 fully connected layers
are reduced to 128 units and reinitialized, LR fully connected layers are replaced by a
single logistic regression layer. Reported times are average per-image processing times.
Maxima per column are reported in underlined bold digits, while second maxima
are reported in bold digits.

related to the specific method. The third column (Discrimination) reports the
accuracy of the multi-class model alone (i.e., class labels are directly computed
using Eq. (1)). Note that such accuracy values are computed removing all neg-
ative samples from the test set. The fourth column (+Rejection) reports the
accuracy of the models after applying the proposed rejection method (i.e., labels
are obtained using Eq. (4)). The fifth column (+HMM) reports the accuracy of
the complete method including the Hidden Markov Model (i.e., final segmenta-
tion labels are obtained using Eq. (9)). Column 6 reports the size of the models
in megabytes. Column 7 finally reports the average time needed to predict the
class label of a single frame1. Table 3 reports per-class true positive rates for the
considered configurations.

The reported results highlight the importance of tuning the considered ar-
chitectural settings to improve both computational performances and accuracy.
In particular, locking the convolutional layers allows to significantly improve
the performances of the fine-tuned model (compare [b] to [a] in Table 2)2. Sig-
nificant performance improvements are observable when the CNN is evaluated
alone (Discrim. column) as well as when the model is integrated in the proposed
system (columns +Rejection and +HMM). This result highlights how the un-
locked network suffers from over-fitting, due to the high number of parameters
to optimize with relatively few training data. It should be noted that, in our
experiments, only convolutional layers are locked, while fully connected ones are
still optimized. Locking convolutional layers, hence, allows to use part of the
network as a bank of object-related feature extractors (the pre-trained convolu-
tional layers), while optimizing the way such features are combined in the fully
connected layers.

Disabling dropout has a positive impact when convolutional layers are locked
and fully connected layers are fine-tuned ([c] vs [b]). This indicates that dropout
is causing the model to underfit due to the scarcity of training data. Interestingly,
when fully connected layers are reduced to 128 units and hence reinitialized with

1
Times have been estimated running the CNN models on a NVIDIA GeForce GTX 480 GPU using
the Caffe framework [17]. They include the rejection of negative frames but do not take into
account the application of the Hidden Markov Model.

2
SVM models are tested on a Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz with LIBSVM [6].
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Per-Class True Positive Rate (TPR)
Id Settings Car C.V.M. Gar. K.T. L.Off. Off. Piano Sink Stud. L.R. Neg.
[a] 91.28 98.73 98.71 100.0 95.87 94.81 98.52 100.0 99.40 99.20 36.91
[b] L 90.71 98.53 98.41 99.60 93.83 93.57 98.48 99.00 98.50 98.91 47.77
[c] L ND 75.57 92.42 87.60 97.95 84.08 71.67 93.32 96.69 94.09 89.73 82.34
[d] L 128 99.09 94.36 74.90 89.46 93.51 84.66 98.16 98.90 99.72 99.09 51.22
[e] L ND 128 99.57 95.43 98.31 100.0 98.54 90.25 98.68 99.51 99.82 99.14 36.51
[f ] L LR 94.53 78.93 85.88 78.39 89.91 60.28 93.57 96.91 97.46 98.20 61.66

Table 3. Per-class true positive rates for the considered configurations. See Table 2
for a legend.

Gaussian noise, disabling dropout seems to favor overfitting as one would gener-
ally expect (compare [e] to [d]). This behavior is probably due to the inclination
of randomly reinitialized layers to easily co-adapt [28]. Reducing the dimension-
ality of the fully connected layers to 128 units helps reducing the dimensions of
the network and improving its speed, but results in a substantial loss in accuracy
due to the needed reinitialization of the weights (compare [d] to [c]).

In order to devise a more compact model, we finally consider replacing the
fully connected layers with a logistic regressor (i.e., a layer with 10 units followed
by softmax). In this case, the locked convolutional layers of the VGG-S network
are used as feature extractors, while predictions are performed combining them
using a simple logistic regressor classifier. This configuration allows to greatly
reduce memory and time requirements at the cost of a modest loss in terms of
accuracy (compare [f ] to [c], [d], [e]).

Among all compared method, the most accurate is [c], followed by the com-
putationally efficient [f ]. Both methods outperform the others by a good margin.
Moreover, it is worth noting that [f ] is more than 90% smaller and 20% faster
than [c] while only about 3% less accurate. Such result is particularly interest-
ing in real-time scenarios involving low-resources and embedded devices (e.g., in
smart glasses or in a drone). Finally, as can be noted from Table 3, only the two
best configurations (methods [c] and [f ]) succeed in correctly rejecting negative
samples, while other methods yield lower true positive rates.

Performances of the proposed method As discussed above, columns 3 to
5 in Table 2 report performances related to the main components involved in
the proposed method, i.e., multi-class classifier, rejection mechanism and Hid-
den Markov Model. As can be noted, high accuracies can be achieved when
discriminating among a finite number of possible locations (column Discrim.).
The need for a rejection mechanism in real-world scenarios makes the problem
much harder, decreasing classification accuracy by 10% in average (compare Dis-
crim. with +Rejection columns). These results suggest that more efforts should
be devoted to effective rejection mechanisms in order to make current classifica-
tion systems useful in real world applications. Indeed, any real system devoted
to distinguish among a number of classes must be able to deal with the nega-
tive ones. Enforcing temporal coherence using a Hidden Markov Model generally
helps reducing the gap between simple discrimination and discrimination + re-
jection (consider for instance methods [c] and [f ]). The effects of the rejection
and HMM modules are qualitatively illustrated in Fig. 3. As can be noted, sim-
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Fig. 3. Graphical representation of the labels produced by the proposed method
(method [c] in Table 2). Each row reports the concatenation of labels produced for
all test sequences. Boundaries between sequences are highlighted with black dashed
lines and “S1” . . . “S10” labels. The visualization is intended to qualitatively assess the
influence of the rejection and HMM components on the performances of the overall
system. Specifically, the first three rows report labels obtained using the multi-class
classifier, the proposed rejection mechanism and the HMM, similarly to what discussed
for Table 2. The last row reports the ground truth. Detailed visualizations for each se-
quence are available in the supplementary material available online. Best seen in color.

ple class discrimination (top row) yields noisy predictions when ground truth
frames are negative. The rejection mechanism (second row) successfully detects
negative segments. The use of a HMM (third row) finally helps reducing sudden
changes in the predicted labels.

5.2 Comparison with the State of the Art

To assess the effectiveness of the proposed method, we compare it with respect to
two baselines and an existing method for personal location recognition [12]. The
first baseline tackles the location recognition problem through feature matching.
The system is initialized extracting SIFT feature points from each test image
and storing them for later use. Given the current frame, SIFT features are ex-
tracted and matched with all images in the training set. To reduce the influence
of outlier feature points, for each considered image pair, we perform a geometric
verification using the MSAC algorithm [32] based on an affine model. Classi-
fication is hence performed considering the training set image presenting the
highest number of inliers and selecting the class to which it belongs. In this case,
the most straightforward way to perform rejection probably consists in setting
a threshold on the number of inliers: if an image is a positive, it is expected
to yield a good match with some example in the dataset, otherwise only weak
matches should be obtained. Since it is not clear how such a threshold should be
arbitrarily set, we learn it from data. To do so, we first normalize the number
of inliers by the number of features extracted from the current frame. We then
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Accuracy Comp. Performances
Id Settings Discrim. +Rejection +HMM Dimensions Time

[c] L ND 94.53 85.00 88.63 378 MB 13.10 ms
[f ] L LR 92.31 81.00 85.37 26 MB 10.23 ms

[g] SIFT 34.64 33.16 – 71 MB 5170.1 ms
[h] L ND NE 73.84 76.42 79.69 378 MB 12.82 ms
[i] SVM [12] 87.76 74.14 79.64 423 MB 97.83 ms

Table 4. Comparisons with the state of the art. Methods [c] and [f ] are reported
from Table 2 for convenience. Architectural settings: L the convolutional layers are
locked, ND dropout is disabled, LR fully connected layers are replaced by a single
logistic regression layer, SIFT the SIFT feature matching baseline, NE the model is
trained on both positive and negative samples, SVM classification based on one-class
and multiclass SVM classifiers.

Per-Class True Positive Rate (TPR)
Id Settings Car C.V.M. Gar. K.T. L.Off. Off. Piano Sink Stud. L.R. Neg.

[c] L ND 75.57 92.42 87.60 97.95 84.08 71.67 93.32 96.69 94.09 89.73 82.34
[f ] L LR 94.53 78.93 85.88 78.39 89.91 60.28 93.57 96.91 97.46 98.20 61.66

[g] SIFT 4.90 5.55 0.02 71.45 15.37 16.62 84.98 22.21 12.80 79.77 24.22
[h] L ND NE 78.16 95.23 71.48 97.53 73.54 50.03 71.95 93.43 95.70 73.49 95.72
[i] SVM [12] 74.97 98.16 97.63 98.45 88.60 92.27 79.13 69.25 59.16 99.13 06.58

Table 5. Per-class true positive rates of the compared methods. See Table 4 for a
legend.

select the threshold which best separates the validation set from the training
negatives. To speed up computation, input images are rescaled in order to have
a standard height of 256 pixels (the same size to which images are resized when
fed to CNN models), keeping the original aspect ratio.

The second considered baseline consists in a CNN trained to discriminate
directly between locations of interest and negatives. In contrast with the pro-
posed method, the baseline explicitly learns from negative samples. Hence, in
our settings, the model is trained on 11 classes comprising 10 locations of in-
terest, plus the negative class. This baseline is implemented adopting the same
architecture as the one of method [c], which is the best performing configuration
in our experiments. It should be noted that training negatives are independent
from validation and test negatives. We also compare our method with respect to
the one proposed in [12]. Such method performs negative rejection and location
recognition using a cascade of One-Class and multiclass SVM classifiers trained
on features extracted employing the VGG network [7].

Table 4 and Table 5 compare the performances of the considered methods.
As can be noted, the proposed methods [c] and [f ] retain the highest accuracies
in Table 4. Requiring about 5 seconds to process each frame, the SIFT matching
method ([g] in Table 4) is the slowest among the compared ones. Moreover, SIFT
matching achieves poor results on the considered task, which indicates that it is
not able to generalize to new views of the same scene and to cope with the many
variabilities typical of egocentric videos. It should be noted that, since the SIFT
baseline does not output any probability values, the HMM cannot be applied in
this case.
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All sequences

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

[c]

[f]

[g]

[h]

[i]

GT

Fig. 4. Graphical representation of the segmentation results produced by the consid-
ered methods (see Table 4). Detailed visualizations for each sequence are available in
the supplementary material. Best seen in color.

Baseline [h] retains a high TPR on negative samples (see Neg. column in
Table 5). However TPRs related to other classes and the accuracy of the overall
system are lower when compared to the proposed approaches. This indicates
how learning from negative samples is not trivial in the proposed problem. The
method introduced in [12] is outperformed by the proposed methods (compare
[i] to [c]-[f ]) and gives inconsistent results in the rejection of negative frames (see
column Neg. in Table 5). Moreover, the proposed approaches are significantly
faster and have smaller size. Fig. 4 finally reports segmentation results of all
compared methods for qualitative assessment.

6 Conclusion

We have proposed a method to segment egocentric videos in order to highlight
personal locations of interest. The system can be trained with few positive sam-
ples provided by the user. Convolutional Neural Networks are used to discrimi-
nate among positive locations, while a non-parametric rejection method is used
to reject locations not specified by the user. A Hidden Markov Model is employed
to enforce temporal coherence among neighboring predictions. We show how the
architecture of the employed CNN can be tuned to optimize performances both
in terms of accuracy and computational requirements. The effectiveness of the
proposed method is assessed comparing it with respect to two baselines and a
state of the art method. Future works will concentrate on studying the gen-
eralization ability of the method by considering multiple users in the personal
location of interest recognition problem.
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